Intermolecular C—H...O, Cl...Cl and π–π interactions in the 2-dichloromethyl derivative of vitamin K3

2013 ◽  
Vol 69 (12) ◽  
pp. 1563-1566
Author(s):  
Raffaella Soave ◽  
Pietro Colombo

The title 1,4-naphthoquinone, 2-dichloromethyl-3-methyl-1,4-dihydronaphthalene-1,4-dione, C12H8Cl2O2, is a chlorinated derivative of vitamin K3, which is a synthetic compound also known as menadione. Molecules of (I) are planar and lie on a crystallographic mirror plane (Z′ = 0.5) in the space groupPnma. They are connected to each other by C—H...O hydrogen bonds, forming two-dimensional layers parallel to theacplane. In addition, Cl...Cl and π–π interactions link adjacent molecules in different layers, thus forming zigzag ribbons along thebaxis, such that a three-dimensional architecture is generated.

2012 ◽  
Vol 68 (10) ◽  
pp. o408-o412 ◽  
Author(s):  
Ashokkumar Subashini ◽  
Kandasamy Ramamurthi ◽  
Helen Stoeckli-Evans

The 4-chloro- [C14H11ClN2O2, (I)], 4-bromo- [C14H10BrN2O2, (II)] and 4-diethylamino- [C18H21N3O2, (III)] derivatives of benzylidene-4-hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond isE. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two-dimensional slab-like networks extending in theaandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-tailviaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two-dimensional networks extending in thebandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-headviaπ–π interactions involving inversion-related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].


IUCrData ◽  
2016 ◽  
Vol 1 (10) ◽  
Author(s):  
Md. Zahid ◽  
R. Akilan ◽  
T. Ganesh ◽  
R. Mohan Kumar ◽  
G. Chakkaravarthi

The asymmetric unit of the title molecular salt, C6H10N2 2+·2H2PO3 −, contains half of a benzene-1,2-diaminium cation and a phosphite anion, the complete cation being generated by a crystallographic mirror plane. In the crystal, N—H...O hydrogen bonds generate R 2 2(9) and R 2 2(8) ring motifs and O—H...O hydrogen bonds generate an R 2 2(8) ring motif. Overall, these generate a three-dimensional framework. The crystal structure also features π–π interactions [centroid-to-centroid distance = 3.8642 (7) Å].


2003 ◽  
Vol 59 (2) ◽  
pp. 248-262 ◽  
Author(s):  
Katharine F. Bowes ◽  
George Ferguson ◽  
Alan J. Lough ◽  
Christopher Glidewell

The structures of seven salts formed by phosphonopropionic acid with organic diamines are reported; in these salts, the hydrogen-bonded substructures formed by the anions can be zero-, one- or two-dimensional, while the overall hydrogen-bonded supramolecular structures are three-dimensional. The 1:1 adduct, compound (1), formed between 1,2-bis(4′-pyridyl)ethene and phosphonopropionic acid is a salt, [{(C12H10N2)H2}2+]·[(C12H10N2)]·[(C3H6O5P)−]2, in which both diamine components lie across centres of inversion in space group P21/c. The anions form hydrogen-bonded head-to-head dimers, and these are linked by the two diamine units into sheets, which are themselves linked by C—H...O hydrogen bonds. With 2,2′-dipyridylamine the acid forms the hydrated salt [{(C10H9N3)H}+]·[(C3H6O5P)−]·H2O (2), in which all components are disordered with occupancy 0.5 in space group Fmm2. The anions form head-to-tail dimers, which are linked into sheets by the cations, and the sheets are linked into a three-dimensional framework by the water molecules. The piperazine salt [{(C4H10N2)H2}2+]·[(C3H5O5P)2−] (3) contains simple anion chains linked into a three-dimensional framework by the two independent cations, both of which are centrosymmetric. In the hydrated salt formed by N,N′-dimethylpiperazine, [{(MeNC4H8NMe)H2}2+]·[(C3H6O5P)−]2·(H2O)2 (4), head-to-tail anion chains combine with the water molecules to form a three-dimensional framework, which encloses voids that contain the cations. In the 4,4′-bipyridyl adduct [{(C10H8N2)H0.72}0.72+]·[{(H0.5O)3PCH2CH2COOH0.78}0.72−] (5), there is extensive disorder of the H atoms that are bonded to N and O atoms, and the anion chains are linked by the cations into sheets, which are themselves linked by C—H...O hydrogen bonds. In the 1:2 adduct formed with 1,2-bis(4′-pyridyl)ethane, [{(C12H12N2)H2}2+]·[(C3H6O5P)−]2 (6), where the cation lies across an inversion centre, the anions form molecular ladders. These ladders are linked into sheets by the cations, which are themselves linked by C—H...O hydrogen bonds. In the methanol-solvated salt formed with 2,6-dimethylpiperazine, [{(C6H14N2)H2}2+]·[(C3H6O5P)−]2· (CH4O)0.34 (7), the anions form sheets that are linked into a three-dimensional framework by the cations. The supramolecular structures are compared with those of analogous salts formed by phosphonoacetic acid.


2016 ◽  
Vol 72 (11) ◽  
pp. 1642-1644
Author(s):  
Bang Zhong Wang ◽  
Jun Ping Zhou ◽  
Yong Zhou ◽  
Jian Song Luo ◽  
Shao Ming Chi

The molecule of the title 1,8-naphthyridine-BF2derivative, C12H10BBr2F2N3O, is located on a mirror plane running parallel to the entire ring system and the attached methyl C atoms. Individual molecules are stacked along theb-axis direction. The cohesion in the crystal structure is accomplished by C—H...F hydrogen bonds and additional off-set π–π interactions [centroid-to-centroid distance = 3.6392 (9) Å, slippage 0.472 Å], leading to the formation of a three-dimensional supramolecular network.


2015 ◽  
Vol 71 (10) ◽  
pp. 1196-1198 ◽  
Author(s):  
Jeganathan Gomathi ◽  
Doraisamyraja Kalaivani

The title molecular salt, C6H8N+·C6H2N3O7−(systematic name: 3-methylpyridinium 2,4,6-trinitrophenolate), crystallizes in the triclinic space groupP-1. The crystal structure of the monoclinic polymorph (space groupP21/n) has been reported [Stilinovic & Kaitner (2011).Cryst. Growth Des.11, 4110–4119]. In the crystal, the anion and cation are linkedviabifurcated N—H...(O,O) hydrogen bonds, enclosing anR12(6) graph-set motif. These units are linkedviaC—H...O hydrogen bonds, forming a three-dimensional framework. Within the framework there are π–π interactions present, involving inversion-related picrate anions and inversion-related pyridinium cations, with inter-centroid distances of 3.7389 (14) and 3.560 (2) Å, respectively.


IUCrData ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Hui Zhao

The title molecule, C11H6F5NO, lies on a mirror plane in the orthorhombic unit cell, with only two F atoms each of the difluoro and trifluoromethyl substituents lying out of the plane. In the crystal, molecules are linked by C—H...O, C—H...N and C—H...F hydrogen bonds, forming a layer structure parallel to the (001) plane. Weak π–π interactions promote the formation of a three-dimensional network.


Author(s):  
Alexander S. Lyakhov ◽  
Ludmila S. Ivashkevich ◽  
Vladimir L. Survilo ◽  
Tatjana V. Trukhachova

Crystals of bis(2-ethyl-3-hydroxy-6-methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2-ethyl-3-hydroxy-6-methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4−, (II), were obtained by reaction of 2-ethyl-6-methylpyridin-3-ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three-dimensional network in the crystal structure of (I) and a two-dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry-related pyridine rings, forming a rod-like cationic arrangement for (I) and cationic dimers for (II).


2014 ◽  
Vol 70 (7) ◽  
pp. 18-22 ◽  
Author(s):  
Dilovan S. Cati ◽  
Helen Stoeckli-Evans

The title compounds, C11H10N4O (HL1) and C11H10N4O (HL2), are pyridine 2-ylmethyl and 4-ylmethyl derivatives, respectively, of pyrazine-2-carboxamide. HL1 was measured at 153 K and crystallized in the monoclinic space groupP21/cwithZ= 4. There has been a report of the same structure measured at room temperature but assumed to crystallize in the triclinic space groupP-1 withZ= 4 [Sasanet al.(2008).Monatsh. Chem.139, 773–780]. In HL1, the pyridine ring is inclined to the pyrazine ring by 61.34 (6)°, while in HL2 this dihedral angle is 84.33 (12)°. In both molecules, there is a short N—H...N interaction involving the pyrazine carboxamide unit. In the crystal of HL1, molecules are linked by N—H...N hydrogen bonds, forming inversion dimers with anR22(10) ring motif. The dimers are linkedviabifurcated-acceptor C—H...O hydrogen bonds, forming sheets lying parallel to (102). The sheets are linkedviaC—H...N hydrogen bonds, forming a three-dimensional structure. In the crystal of HL2, molecules are linked by N—H...N and C—H...N hydrogen bonds to form chains propagating along [010]. The chains are linkedviaC—H...O hydrogen bonds, forming sheets lying parallel to (100). Within the sheets there are π–π interactions involving neighbouring pyrazine rings [inter-centroid distance = 3.711 (15) Å]. Adjacent sheets are linkedviaparallel slipped π–π interactions involving inversion-related pyridine rings [inter-centroid distance = 3.6395 (17) Å], forming a three-dimensional structure.


Author(s):  
R. A. Nagalakshmi ◽  
J. Suresh ◽  
S. Maharani ◽  
R. Ranjith Kumar ◽  
P. L. Nilantha Lakshman

In the title compounds, C24H22BrN3, (I), and C24H22ClN3, (II), the 2-aminopyridine ring is fused with a cycloheptane ring, which adopts a half-chair conformation. The planes of the phenyl and benzene rings are inclined to that of the central pyridine ring [r.m.s. deviations = 0.0083 (1) and 0.0093 (1) Å for (I) and (II), respectively] by 62.47 (17) and 72.51 (14)°, respectively, in (I), and by 71.44 (9) and 54.90 (8)°, respectively, in (II). The planes of the aromatic rings are inclined to one another by 53.82 (17)° in (I) and by 58.04 (9)° in (II). In the crystals of both (I) and (II), pairs of N—H...Nnitrilehydrogen bonds link the molecules, forming inversion dimers withR22(12) ring motifs. In (I), the resulting dimers are connected through C—H...Br hydrogen bonds, forming sheets parallel to (10-1), and π–π interactions [inter-centroid distance = 3.7821 (16) Å] involving inversion-related pyridine rings, forming a three-dimensional network. In (II), the resulting dimers are connected through π–π interactions [inter-centroid distance = 3.771 (2) Å] involving inversion-related pyridine rings, forming a two-dimensional network lying parallel to (001).


2014 ◽  
Vol 70 (2) ◽  
pp. o145-o146
Author(s):  
Joel T. Mague ◽  
Alaa A.-M. Abdel-Aziz ◽  
Adel S. El-Azab ◽  
Amer M. Alanazi

The title compound, C12H14N2O3S, crystallizes with two independent molecules (AandB) in the asymmetric unit. The five-membered imidazolidin-2-one rings in both molecules are twisted about the C—C bond. In the crystal, theAandBmolecules are associatedviapairs of N—H...O hydrogen bonds, formingA–Bdimers. These dimers are linkedviaC—H...S hydrogen bonds, forming double dimers, which are in turn linkedviaC—H...O hydrogen bonds forming two-dimensional networks lying parallel to (001). There are also C—H...π interactions present, which consolide the layers and link them, so forming a three-dimensional structure.


Sign in / Sign up

Export Citation Format

Share Document