vitamin k3
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 48)

H-INDEX

32
(FIVE YEARS 4)

Food Control ◽  
2022 ◽  
pp. 108807
Author(s):  
Xiran Li ◽  
Lina Sheng ◽  
Adrian Oscar Sbodio ◽  
Zheng Zhang ◽  
Gang Sun ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1109
Author(s):  
Kieu Ngo ◽  
Paula Castillo ◽  
Roger A. Laine ◽  
Qian Sun

The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a highly destructive pest and a cosmopolitan invasive species. Sustainable termite management methods have been improving with the search for novel insecticides that are effective, safe, and cost efficient. Menadione, also known as vitamin K3, is a synthetic analogue and biosynthetic precursor of vitamin K with low mammalian toxicity. Menadione has shown insecticidal activity in several insects, presumably due to interference with mitochondrial oxidative phosphorylation. However, little is known about its effectiveness against termites. In this study, we evaluated the toxicity and repellency of menadione in C. formosanus. Our results showed that menadione affected the survival and feeding activity of termites both in filter paper and substrate (sand) treatments, and menadione influenced termite tunneling activity in treated sand. In a no-choice assay, ≥90% mortality after seven days and minimal or no food consumption were recorded when sand was treated with menadione at 6 to 600 ppm. In a two-choice assay with a combination of treated and untreated sand, termites were deterred by menadione at 6 to 600 ppm and exhibited low mortality (≤30%) over seven days, while tunneling activity was prevented with 60 to 600 ppm of menadione treatment. Overall, our study demonstrated dose-dependent toxicity and repellency of menadione in C. formosanus. The potential use of menadione as an alternative termite control agent is discussed.


Author(s):  
Yong Wang ◽  
Shaofei Chen ◽  
Kai Huo ◽  
Bin Wang ◽  
Junguo Liu ◽  
...  

Abstract CoQ10, which has been widely applied in medicine by dietary supplement, possesses important functions in antioxidant process and bioenergy generation. Iterative mutagenesis introduced by atmospheric and room temperature plasma (ARTP) treatment was studied to improve the coenzyme Q10 (CoQ10) production of Rhodobacter sphaeroides (R. sphaeroides), and multiple selection pressures including vitamin K3 (VK3), Na2S and benzoic acid (BA) were adopted for the first time. After two rounds of mutation and screening, a mutant strain R.S 17 was obtained, and the product titer was increased by 80.37%. The CoQ10 titer and cell density reached 236.7 mg L−1 and 57.09 g L−1, respectively, in the fed-batch fermentation, and the CoQ10 content was 22.1% higher than that of the parent strain. In addition, the spectral scanning results indicated the metabolic flux improvement contributing to the CoQ10 production in R.S 17, and the genetic stability was validated. Based on the iterative mutagenesis introduced by ARTP under multiple selection pressures, the promotion of CoQ10 production by R. sphaeroides was achieved. The significant improvement in fermentation performances and the good genetic stability of R.S 17 indicate a potential way for the efficient biosynthesis of CoQ10.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6779
Author(s):  
Krzysztof B. Beć ◽  
Justyna Grabska ◽  
Christian W. Huck ◽  
Sylwester Mazurek ◽  
Mirosław A. Czarnecki

Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K3) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600–2600 cm−1. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000–3600 and 2800–1800 cm−1 ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure.


Author(s):  
Dr. Shailendra Kumar Srivastava

Abstract: An electrical signal can induce a biological reaction; the reverse in is also true in most of the cases and in this way biological processes can be used to generate electricity for powering electrical equipment. Even though the Bio fuel cells have been known for almost a century since the first microbial BFC(Bio fuel cells) was demonstrated in 1912,the first enzyme-based bio-fuel cell was reported only in 1964 using glucose oxidize (GOx) as the anodic catalyst and glucose as the bio-fuel. a type of battery that uses energy sources such as carbohydrates, amino acids and enzymes from a variety of sources. anode consists of sugar-digesting enzymes and mediator, and the cathode composes of oxygen reducing enzymes and mediator. The mediators in this case are Vitamin K3 for the anode and potassium ferricyanide for the cathode. When sugar is added to the mixture, the anode garners the electrons and hydrogen ions. When the battery generates power, the protons travel to the cathode through the electrolyte to combine with the oxygen to produce water. Since the biocatalysts (enzymes) are very selective catalytically, the miniaturized bio-fuel cell could in principle be fabricated as a membrane-less fuel cell. Keywords: Bio-fuel Cells, Biocatalyst, Glucose Oxides, Enzymes.


2021 ◽  
Vol 183 ◽  
pp. 182-192
Author(s):  
Ruyu Wang ◽  
Qing Hu ◽  
Haonan Wang ◽  
Guanghao Zhu ◽  
Mengge Wang ◽  
...  

2021 ◽  
Vol 330 ◽  
pp. 115707
Author(s):  
Xiangli Liu ◽  
Michael H. Abraham ◽  
William E. Acree

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1140
Author(s):  
Huakai Wang ◽  
Pan Yang ◽  
Longxian Li ◽  
Nan Zhang ◽  
Yongxi Ma ◽  
...  

Six types of vitamin K3 (VK3); two sources (menadione sodium bisulfite, MSB; menadione nicotinamide bisulfite, MNB), and three different forms (crystal, micro-capsule, and micro-sphere) were used to determine the retention of VK3 in vitamin premixes (Experiment 1) or vitamin trace mineral (VTM) premixes (Experiment 2) after 1, 2, 3, and 6 months of storage. The retention of VK3 in vitamin premixes was evaluated at 25 °C/60% relative humidity or 40 °C/75% relative humidity in an incubator in Experiment 1 and in VTM premixes (choline chloride: 0 vs. 16,000 mg/kg) stored at room temperature in Experiment 2. The VK3 retention in vitamin premix or VTM premix decreased significantly with the extension of storage time (p < 0.05). In Experiment 1, the VK3 retention was higher in the 25 °C/60% incubator (56%) than in the 40 °C/75% incubator (28%). The MNB retention (52%) was higher than MSB retention (32%). The retention of VK3 in micro-capsules (43%) or micro-spheres (48%) was higher than the crystal form (35%) after six months of storage. In Experiment 2, there was no difference between the retention of MSB (49%) or MNB (47%). The retention of VK3 of micro-capsule (51%) or micro-sphere (54%) was higher than that of crystal form (40%). The VK3 retention was higher in the choline-free group (51%) than in the choline group (47%) after six months of storage. Finally, the predicted equations of VK3 retention with storage time in vitamin premixes or VTM premixes were established. The R2 of the prediction equations was ≥0.9005, indicating that time is an important factor in predicting VK3 retention. In conclusion, the higher temperature-relative humidity, choline had negative effects on VK3 retention during premix storage. MNB retention was higher than MSB during storage of vitamin premix. The encapsulated forms of VK3, micro-capsules and micro-spheres, could improve VK3 storage stability in vitamin premix and VTM premix.


Sign in / Sign up

Export Citation Format

Share Document