The low-temperature structure of cis-cisoid-cis-perhydroanthracene, C14H24

1984 ◽  
Vol 40 (8) ◽  
pp. 1463-1465 ◽  
Author(s):  
H. van Koningsveld ◽  
J. M. A. Baas ◽  
B. van de Graaf
1987 ◽  
Vol 103 (1) ◽  
pp. 73-78 ◽  
Author(s):  
H. Ketata ◽  
M. H. Ben Ghozlen ◽  
A. Daoud ◽  
I. Pabst

1982 ◽  
Vol 20 ◽  
Author(s):  
R. Moret ◽  
R. Comes ◽  
G. Furdin ◽  
H. Fuzellier ◽  
F. Rousseaux

ABSTRACTIn α-C5n-HNO3 the condensation of the room-temperature liquid-like diffuse ring associated with the disorder-order transition around 250 K is studied and the low-temperature. superstructure is examined.It is found that β-C8n-HNO3 exhibits an in-plane incommensurate order at room temperature.Two types of graphite-Br2 are found. Low-temperature phase transitions in C8Br are observed at T1 ≍ 277 K and T2 ≍ 297 K. The room-temperature structure of C14Br is reexamined. Special attention is given to diffuse scattering and incommensurability.


2011 ◽  
Vol 84 (18) ◽  
Author(s):  
Benjamin Frigan ◽  
Alejandro Santana ◽  
Michael Engel ◽  
Daniel Schopf ◽  
Hans-Rainer Trebin ◽  
...  

2018 ◽  
Vol 233 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Masoumeh Tabatabaee ◽  
Morgane Poupon ◽  
Václav Eigner ◽  
Přemysl Vaněk ◽  
Michal Dušek

AbstractThe room temperature structure withP21/csymmetry of the zinc(II) complex of pyridine-2,6-dicarboxylic acid was published by Okabe and Oya (N. Okabe, N. Oya, Copper(II) and zinc(II) complexes of pyridine-2,6-dicarboxylic acid.Acta Crystallogr. C.2000,56, 305). Here we report crystal structure of the low temperature phaseβ-[Zn(pydcH)2]·3H2O, pydc=C7H3NO4, resulting from the phase transition around 200K. The diffraction pattern of the low temperature phase revealed satellite reflections, which could be indexed with q-vector 0.4051(10)b* corresponding to (3+1)Dincommensurately modulated structure. The modulated structure was solved in the superspace groupX21/c(0b0)s0, whereXstands for a non-standard centring vector (½, 0, 0, ½), and compared with the room temperature phase. It is shown that hydrogen bonds are the main driving force of modulation.


Author(s):  
Peter Müller ◽  
Frank R. Fronczek ◽  
Stacey J. Smith ◽  
Teresa Mako ◽  
Mindy Levine

A second, monoclinic, polymorph of the title compound, C14H8Cl2, has been found. In addition to the structure of this monoclinic form, the structure of the previously described orthorhombic form [Desvergne, Chekpo & Bouas-Laurent (1978).J. Chem. Soc. Perkin Trans. 2, pp. 84–87; Benites, Maverick & Fronczek (1996).Acta Cryst.C52, 647–648] has been redetermined at low temperature and using modern methods. The low-temperature structure of the orthorhombic form is of significantly higher quality than the previously published structure and additional details can be derived. A comparison of the crystal packing of the two forms with a focus on weak intermolecular C—H...Cl interactions shows the monoclinic structure to have one such interaction linking the molecules into infinite ribbons, while two crystallographically independent C—H...Cl interactions give rise to an interesting infinite three-dimensional network in the orthorhombic crystal form.


2003 ◽  
Vol 135-136 ◽  
pp. 577-578 ◽  
Author(s):  
K. Kato ◽  
K. Oshima ◽  
T. Kambe ◽  
Y. Nogami ◽  
T. Sasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document