temperature liquid
Recently Published Documents


TOTAL DOCUMENTS

743
(FIVE YEARS 131)

H-INDEX

43
(FIVE YEARS 8)

2022 ◽  
Vol 176 ◽  
pp. 114379
Author(s):  
Sasikarn Nuchdang ◽  
Nathan Phruetthinan ◽  
Papichaya Paleeleam ◽  
Vichai Domrongpokkaphan ◽  
Santi Chuetor ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 168
Author(s):  
Weldejewergis Gebrewahid Kidanu ◽  
Jaehyun Hur ◽  
Il Tae Kim

Owing to their intrinsic properties, such as deformability, high electrical conductivity, and superior electrochemical performance, room-temperature liquid metals and liquid metal alloys have attracted the attention of researchers for a wide variety of applications, including portable and large-scale energy storage applications. In this study, novel gallium-indium-tin eutectic (EGaInSn) room-temperature liquid metal nanoparticles synthesized using a facile and scalable probe-ultrasonication method were used as anode material in lithium-ion batteries. The morphology, geometry, and self-healing properties of the synthesized room-temperature liquid metal nanoparticles were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (SEM/EDS and TEM/EDS). The synthesized room-temperature liquid metal nanoparticles delivered a specific capacity of 474 mAh g–1 and retained 77% of the stable reversible capacity after 500 galvanostatic charge-discharge cycles at a constant current density of 0.1 A g–1. The high theoretical specific capacity, combined with its self-healing and fluidic features, make EGaInSn room-temperature liquid metal nanoparticles a potential anode material for large-scale energy storage applications.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 89
Author(s):  
Janah Shaya ◽  
Gabriel Correia ◽  
Benoît Heinrich ◽  
Jean-Charles Ribierre ◽  
Kyriaki Polychronopoulou ◽  
...  

We report herein the synthesis of siloxane-functionalized CBP molecules (4,4′-bis(carbazole)-1,1′-biphenyl) for liquid optoelectronic applications. The room-temperature liquid state is obtained through a convenient functionalization of the molecules with heptamethyltrisiloxane chains via hydrosilylation of alkenyl spacers. The synthesis comprises screening of metal-catalyzed methodologies to introduce alkenyl linkers into carbazoles (Stille and Suzuki Miyaura cross-couplings), incorporate the alkenylcarbazoles to dihalobiphenyls (Ullmann coupling), and finally introduce the siloxane chains. The used conditions allowed the synthesis of the target compounds, despite the high reactivity of the alkenyl moieties bound to π-conjugated systems toward undesired side reactions such as polymerization, isomerization, and hydrogenation. The features of these solvent-free liquid CBP derivatives make them potentially interesting for fluidic optoelectronic applications.


2021 ◽  
Vol 933 ◽  
Author(s):  
Ryan McGuan ◽  
R. Candler ◽  
H.P. Kavehpour

Planar partial coalescence is a phenomenon in which a droplet at a free surface or interface between two fluids coalesces into the plane surface producing a smaller droplet rather than coalescing completely. This smaller, ‘daughter’ droplet will be driven towards the interface by gravity and capillary forces resulting in a cascade effect of progressively small daughter droplets until the Ohnesorge Number approaches $\sim$ 1 and the cascade terminates with a full coalescence event. This paper utilizes a room temperature liquid metal alloy composed of gallium, indium and tin to study partial coalescence in a viscous quiescent medium and observed bouncing of the coalescing droplets on the interface. We observed the event using high speed videography measuring effects such as the droplet to daughter droplet ratio, droplet velocities, droplet bounce heights and coefficients of restitution for the bouncing event. An existing model (Honey & Kavehpour, Phys. Rev. E, vol. 73, 2006) from our group was used, validated and expanded upon to include buoyancy effects to estimate the initial velocity of the droplet and we developed two new models for the droplet travel and maximum bounce height. The first utilizes the Stokes model for drag to moderate success while the second utilizes a model from Beard & Pruppacher (J. Atmos. Sci., vol. 26, 1969, pp. 1066–1072) and a fourth-order Runge–Kutta numerical integration scheme to predict the droplet velocity and position as functions of time. Additionally the coefficient of restitution was determined from the model using a shooting method technique in tandem with measured data to find a coefficient of restitution value of $A = 0.27 \pm 0.06$ . This ‘bouncing drop’ phenomenon continues in a quiescent viscous fluid to the sub-micron scale and was facilitated by the material properties of the liquid metal including the high density, moderate viscosity and particularly high interfacial tension.


Author(s):  
Janah Shaya ◽  
Gabriel Correia ◽  
Benoit heinrich ◽  
Jean-Charles Ribierre ◽  
Kyriaki Polychronopoulou ◽  
...  

We report herein the synthesis of siloxane-functionalized CBP molecules (4,4’-bis(carbazole)-1,1′-biphenyl) for liquid optoelectronic applications. The room-temperature liquid state is obtained through a convenient functionalization of the molecules with heptamethyltrisiloxane chains via hydrosilylation of alkenyl spacers. The synthesis comprises screening of metal-catalyzed methodologies to introduce alkenyl linkers into carbazoles (Stille and Suzuki Miyaura cross-couplings), incorporate the alkenylcarbazoles to dihalobiphenyls (Ullmann coupling), and finally introduce the siloxane chains. The used conditions allowed the synthesis of the target compounds, despite the high reactivity of the alkenyl moieties bound to π-conjugated systems toward undesired side reactions such as polymerization, isomerization, and hydrogenation. The features of these solvent-free liquid CBP derivatives make them potentially interesting for fluidic optoelectronic applications.


2021 ◽  
pp. 103062
Author(s):  
Honghao Liu ◽  
Weixin Zhang ◽  
Ji Tu ◽  
Qigao Han ◽  
Yaqing Guo ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanna Korpanty ◽  
Lucas R. Parent ◽  
Nicholas Hampu ◽  
Steven Weigand ◽  
Nathan C. Gianneschi

AbstractHerein, phase transitions of a class of thermally-responsive polymers, namely a homopolymer, diblock, and triblock copolymer, were studied to gain mechanistic insight into nanoscale assembly dynamics via variable temperature liquid-cell transmission electron microscopy (VT-LCTEM) correlated with variable temperature small angle X-ray scattering (VT-SAXS). We study thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMA)-based block copolymers and mitigate sample damage by screening electron flux and solvent conditions during LCTEM and by evaluating polymer survival via post-mortem matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Our multimodal approach, utilizing VT-LCTEM with MS validation and VT-SAXS, is generalizable across polymeric systems and can be used to directly image solvated nanoscale structures and thermally-induced transitions. Our strategy of correlating VT-SAXS with VT-LCTEM provided direct insight into transient nanoscale intermediates formed during the thermally-triggered morphological transformation of a PDEGMA-based triblock. Notably, we observed the temperature-triggered formation and slow relaxation of core-shell particles with complex microphase separation in the core by both VT-SAXS and VT-LCTEM.


Sign in / Sign up

Export Citation Format

Share Document