Low-Order Structure-Factor Amplitude and Sign Determination of an Unknown Structure AlmFe by Quantitative Convergent-Beam Electron Diffraction

Author(s):  
Y. F. Cheng ◽  
W. Nüchter ◽  
J. Mayer ◽  
A. Weickenmeier ◽  
J. Gjønnes
Author(s):  
S. Swaminathan ◽  
I. P. Jones ◽  
N. J. Zaluzec ◽  
D. M. Maher ◽  
H. L. Fraser

It has been claimed that the effective Peierls stresses and mobilities of certain dislocations in TiAl are influenced by the anisotropy of bonding charge densities. This claim is based on the angular variation of electron charge density calculated by theory. It is important to verify the results of these calculations experimentally, and the present paper describes a series of such experiments. A description of the bonding charge density distribution in materials can be obtained by utilizing the charge deformation density (Δρ (r)) defined by(1) where V is the volume of the unit cell, Fobs is the experimentally determined low order structure factor and Fcalc is the structure factor calculated using the Hartree-Fock neutral atom model. To determine the experimental low order structure factors, a technique involving a combination of convergent beam electron diffraction (CBED) and electron energy loss spectroscopy (EELS) has been used.


2003 ◽  
Vol 9 (5) ◽  
pp. 379-389 ◽  
Author(s):  
Jesper Friis ◽  
Bin Jiang ◽  
John C.H. Spence ◽  
Randi Holmestad

Accurate low-order structure factors for copper metal have been measured by quantitative convergent beam electron diffraction (QCBED). The standard deviation of the measured structure factors is equal to or smaller than the most accurate measurement by any other method, including X-ray single crystal Pendellösung, Bragg γ-ray diffraction, and high-energy electron diffraction. The electron structure factor for the (440) reflection was used to determine the Debye-Waller (DW) factor. The local heating of the specimen by the electron beam is determined to be 5 K under the current illumination conditions. The low-order structure factors for copper measured by different methods are compared and discussed. The new data set is used to test band theory and to obtain a charge density map. The charge deformation map shows a charge surplus between the atoms and agrees fairly well with the simple model of copper 2+ ions at the atomic sites in a sea of free uniformly distributed electrons.


2011 ◽  
Vol 1295 ◽  
Author(s):  
X. H. Sang ◽  
A. Kulovits ◽  
J. Wiezorek

ABSTRACTAccurate Debye-Waller (DW) factors of chemically ordered β-NiAl (B2, cP2, ${\rm{Pm}}\bar 3 {\rm{m}}$) have been measured at different temperatures using an off-zone axis multi-beam convergent beam electron diffraction (CBED) method. We determined a cross over temperature below which the DW factor of Ni becomes smaller than that of Al of ~90K. Additionally, we measured for the first time DW factors and structure factors of chemically ordered γ1-FePd (L10, tP2, P4/mmm) at 120K. We were able to simultaneously determine all four anisotropic DW factors and several low order structure factors using different special off-zone axis multi-beam convergent beam electron diffraction patterns with high precision and accuracy. An electron charge density deformation map was constructed from measured X-ray diffraction structure factors for γ1-FePd.


2002 ◽  
Vol 382 (4) ◽  
pp. 422-430 ◽  
Author(s):  
Takuya Hashimoto ◽  
Kenji Tsuda ◽  
Junichiro Shiono ◽  
Junichiro Mizusaki ◽  
Michiyoshi Tanaka

1999 ◽  
Vol 589 ◽  
Author(s):  
C. Schuer ◽  
M. Leicht ◽  
T. Marek ◽  
H.P. Strunk

AbstractWe have optimized the sensitivity of convergent beam electron diffraction (CBED) by orienting the specimen such that the central (000) diffraction disc shows a pattern of defect lines that are most sensitive to tetragonal distortion. We compare the position of these lines in the experimentally obtained patterns with results from computer simulations, which need to be based on dynamical diffraction theory. In both experimental and simulated patterns the positions of the defect lines are determined by applying a Hough transformation. As a result of this optimized approach, we can measure the tetragonal distortion of a low temperature grown GaAs layer as low as 0.04%.


2000 ◽  
Vol 69 (7) ◽  
pp. 1939-1941 ◽  
Author(s):  
Kenji Tsuda ◽  
Shuichi Amamiya ◽  
Michiyoshi Tanaka ◽  
Yukio Noda ◽  
Masahiko Isobe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document