Isotope Effect in TlH2PO4 and TlD2PO4

1998 ◽  
Vol 54 (6) ◽  
pp. 790-797 ◽  
Author(s):  
S. Ríos ◽  
W. Paulus ◽  
A. Cousson ◽  
M. Quilichini ◽  
G. Heger

The crystal structure of the antiferroelectric phase of TlD2PO4, deuterated thallium dihydrogenphosphate, has been determined from single-crystal neutron diffraction data collected at room temperature. The para-antiferroelectric transition (T_c^d = 353 K) of TlD2PO4 is analysed from a structural point of view and compared with the phase transition of TlH2PO4 at TI = 357 K, already characterized. The distinct phase sequences observed in the two compounds when decreasing temperature from that of the high-temperature prototype phase (prototype phase/room-temperature phase/low-temperature phase) are discussed and associated with the different ordering of the two crystallographically inequivalent H (D) atoms existing in the prototype phase.

1996 ◽  
Vol 52 (2) ◽  
pp. 287-295 ◽  
Author(s):  
J. Zaleski ◽  
A. Pietraszko

[NH2(CH3)2]3Sb2Cl9 (dimethylammonium nonachlorodiantimonate, DMACA) has, at 200 K, a monoclinic Pc space group, with a = 9.470 (3), b = 9.034 (3), c = 14.080 (4) Å, β = 95.81 (3)°, V = 1198.4 (4) Å3, Z = 2 [R = 0.024, wR = 0.025 for 4613 independent reflections with F > 4σ(F)]. At 298 K DMACA has P21/c space group with a = 9.686 (3), b = 9.037 (3), c = 14.066 (4) Å, β = 95.57 (3)°, V = 1225.3 (5) Å3, Z = 2 [R = 0.034, wR = 0.035 for 2736 reflections with F > 4σ(F)]. The anionic sublattice of DMACA consists of polyanionic (Sb2Cl9 3−), layers. In the low-temperature phase there are three crystallographically non-equivalent dimethylammonium cations in the crystal structure. One of the cations is located inside the polyanionic layers, two others – one ordered and one disordered – between the polyanionic layers. In the room-temperature phase there are two non-equivalent cations – both disordered – in the crystal structure. Temperature dependencies of lattice parameters between 200 and 300 K were determined. The occurrence of a second-order phase transition at T = 242 K was confirmed. The dependence of lengths of Sb—Cl contacts on the presence and strength of N—H...CI hydrogen bonds was discussed. It was found that lengths of Sb—Cl bonds may differ from each other by as much as 0.3 Å, because of the presence of N—H...Cl hydrogen bonds. These differences were attributed to distortion of the lone-electron pair on antimony(Ill).


1987 ◽  
Vol 42 (7) ◽  
pp. 739-748 ◽  
Author(s):  
Dirk Borchers ◽  
Alarich Weiss

A phase transition has been observed in bis(pyridinium) hexachlorometallates (C5H5NH)2[MIVCl6]. M = Sn. Te. Pb. Pt. The crystal structure of the low temperature phase II of the salt with M = Sn was determined, space group C 1ḷ- P 1̅, Z = 1 (a = 734.1pm, b = 799.0 pm, c = 799.7 pm,α= 83.229°. β = 65.377°, γ= 84.387°, T = 297 K). The four compounds are isotypic in phase II as well as in the high temperature phase I (C2H2-B2 /m, Z = 2) for which the crystal structure is known for M = Te . The lattice constants of all compounds (both phases) are given. The temperature dependence of the 35Cl NQR spectrum was investigated. The three line 35Cl NQR spectrum is in agreement with the crystal structure. The dynamics of the pyridinium ring shows up in a fade out of part of the 35Cl NQR spectrum . The influence o f H ↔ D exchange on 35Cl NQR is studied and an assignment of ν (35Cl) ↔ Cl(i) is proposed. The nature of the phase transition P1̅ (Z = 1) ↔ B2 /m (Z = 2) is discussed.


2000 ◽  
Vol 55 (1-2) ◽  
pp. 225-229 ◽  
Author(s):  
Hideta Ishihara ◽  
Keizo Horiuchi ◽  
Thorsten M. Gesing ◽  
Shi-qi Dou ◽  
J.-Christian Buhl ◽  
...  

The temperature dependence of 127I NQR and DSC as well as the crystal structure at room temperature of the title compound were determined. This compound shows a first-order phase transition of an order-disorder type at 245 K. Eight 127I(v1:m = ±1/2 ↔ ±3/2) NQR lines of 79.57, 81.86, 82.56, 83.36, 84.68, 87.72, 88.34, and 88.86 MHz, and corresponding eight 127I(v2: m = ±3/2 ↔±5/2) NQR lines were observed at liquid nitrogen temperature. Three 127I(υi) NQR lines wfth an intensity ratio of 1:1:2 in the order of decreasing frequency were observed just above the transition point and two NQR lines except for the middle-frequency line disappeared around room temperature. This temperature behavior of NQR lines is very similar to that observed in [N(CH3)4]2Hgl4. Another first-order phase transition takes place at 527 K. The structure of the room-temperature phase was redetermined: orthorhombic, Pnma, Z = 4, a = 1342.8(3), b = 975.7(2), c = 1696.5(3) pm. The NQR result of three lines with an intensity ratio of 1:1:2 is in agreement with this structure. The thermal displacement parameters of atoms in both cations and anions are large.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joachim Breternitz ◽  
Michael Tovar ◽  
Susan Schorr

Abstract The crystal structure of MAPbI3, the signature compound of the hybrid halide perovskites, at room temperature has been a reason for debate and confusion in the past. Part of this confusion may be due to twinning as the material bears a phase transition just above room temperature, which follows a direct group–subgroup relationship and is prone to twinning. Using neutron Laue diffraction, we illustrate the nature of twinning in the room temperature structure of MAPbI3 and explain its origins from a group-theoretical point-of-view.


1999 ◽  
Vol 54 (3) ◽  
pp. 372-376 ◽  
Author(s):  
Andreas Komath ◽  
Oliver Blecher

Tetramethylammonium cyanide crystallizes in the tetragonal space group P4/nmm, Z = 2, with cell dimensions a = 773.6(1), c = 546.8(1) pm. The cyanide ion is disordered in the plane perpendicular to the c-axis indicating a rotation. The room temperature phase undergoes a thermal phase transition at -59.9°C probably caused by an order-disorder transition of the cyanide ion.


2015 ◽  
Vol 221 ◽  
pp. 224-229 ◽  
Author(s):  
Maria Orlova ◽  
Sergey Khainakov ◽  
Dmitriy Michailov ◽  
Lukas Perfler ◽  
Christoph Langes ◽  
...  

2006 ◽  
Vol 62 (1) ◽  
pp. 102-108 ◽  
Author(s):  
G. Ślósarek ◽  
M. Kozak ◽  
J. Gierszewski ◽  
A. Pietraszko

The crystal structure of kinetin dihydrogenphosphate has been determined at 115 and 293 K. Kinetin dihydrogenphosphate undergoes a polymorphic phase transition at 291.1 K. In both phases the crystal belongs to the triclinic system with the symmetry described by the space group P\bar 1. In the low-temperature phase, the unit cell is doubled along the a axis. There is a dynamic equilibrium between different tautomeric forms of the adenine residue, determined by the distribution of H atoms within the network of hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document