proton disorder
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sergey V. Gudkovskikh ◽  
Mikhail Kirov

Abstract The ability to form numerous crystalline modifications of ice and gas hydrate frameworks is a characteristic feature of water. In fact, this structural variety is much wider due to the proton disorder. Configurations with different arrangements of hydrogen atoms (protons) in hydrogen bonds are not equivalent in their properties. Polyhedral water clusters are convenient objects for studying the effect of proton disorder on the properties of ice-like systems. It was previously established that the stability of water polyhedra is determined by the competition of two factors. The geometric factor gives preference to tetrahedrally coordinated structures with a large number of pentagonal faces. The topological factor takes into account the number of energetically most favorable types of H-bonds. This number increases with the number of square faces. It was found that tetrahedrally coordinated structures are not the most stable. However, these calculations were performed without taking thermal effects into account [Kirov M. V., J. Phys. Chem. A, 2020, 124, 4463−4470]. The purpose of the present article is to study the structural stability of various water polyhedra at different temperatures. In the course of modeling, using the Amoeba force field, the advantage of configurations with a large number of square faces is demonstrated. The structure and energetics of surface defects are studied. Several very stable structures of unusual shape were found, including polyhedra which contain 4-coordinated molecules and polyhedra whose O–H groups are directed to the cluster center. The comparative analysis of cluster stability includes the temperature intervals of melting-like transitions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aleks Reinhardt ◽  
Bingqing Cheng

AbstractThe set of known stable phases of water may not be complete, and some of the phase boundaries between them are fuzzy. Starting from liquid water and a comprehensive set of 50 ice structures, we compute the phase diagram at three hybrid density-functional-theory levels of approximation, accounting for thermal and nuclear fluctuations as well as proton disorder. Such calculations are only made tractable because we combine machine-learning methods and advanced free-energy techniques. The computed phase diagram is in qualitative agreement with experiment, particularly at pressures ≲ 8000 bar, and the discrepancy in chemical potential is comparable with the subtle uncertainties introduced by proton disorder and the spread between the three hybrid functionals. None of the hypothetical ice phases considered is thermodynamically stable in our calculations, suggesting the completeness of the experimental water phase diagram in the region considered. Our work demonstrates the feasibility of predicting the phase diagram of a polymorphic system from first principles and provides a thermodynamic way of testing the limits of quantum-mechanical calculations.


2018 ◽  
Vol 74 (12) ◽  
pp. 1635-1640 ◽  
Author(s):  
Khai-Nghi Truong ◽  
Martin Meven ◽  
Ulli Englert

The substituted acetylacetone 3-[2-(pyridin-4-yl)ethyl]pentane-2,4-dione, C12H15NO2, (1), with an ethylene bridge between the acetylacetone moiety and the heteroaromatic ring, represents an attractive linker for mixed-metal coordination polymers. In the crystal, (1) adopts an antiperiplanar conformation with respect to the C—C bond in the central ethylene group and almost coplanar acetylacetone and pyridyl groups. The ditopic molecule exists as the enol tautomer, with proton disorder in the short intramolecular hydrogen bond. Single-crystal neutron diffraction at 2.5 K indicated site occupancies of 0.602 (17) and 0.398 (17). The geometry of the acetylacetone moiety is in agreement with such a site preference of the bridging hydrogen: the O atom associated with the preferred H-atom site subtends the longer [1.305 (2) Å] and the more carbonyl-like O atom the shorter [1.288 (2) Å] C—O bond. Based on structure-factor calculations for the alternative H-atom sites, reflections particularly sensitive for proton distribution were identified and measured in a second neutron data collection at 170 K. At this temperature, 546 independent neutron intensities were used to refine positional and isotropic displacement parameters for a structure model in which parameters for C and O atoms were constrained to those obtained by single-crystal X-ray diffraction at the same temperature. The site occupancies for the disordered proton do not significantly differ from those at 2.5 K.


2016 ◽  
Vol 93 (12) ◽  
Author(s):  
Owen Benton ◽  
Olga Sikora ◽  
Nic Shannon

2015 ◽  
Vol 143 (8) ◽  
pp. 084507 ◽  
Author(s):  
Viviana Garbuio ◽  
Michele Cascella ◽  
Igor Kupchak ◽  
Olivia Pulci ◽  
Ari Paavo Seitsonen

2014 ◽  
Vol 70 (a1) ◽  
pp. C559-C559
Author(s):  
Lucy Saunders ◽  
Harriott Nowell ◽  
Lynne Thomas ◽  
Paul Raithby ◽  
Chick Wilson

Hydrogen bonding is a valuable intermolecular interaction in "engineering" solid-state materials. This is because of the directionality and relative strength (1) of these bonds. Hydrogen bonds enable charge and energy transfer, via H-bond evolution, in a range of biological and chemical systems (2). Recent work has demonstrated that single crystal X-ray diffraction can be used to image the evolution of hydrogen bonds, including variable temperature proton migration and proton disorder processes. In particular, in a recent study of the temperature dependent proton disorder in hydrogen bonded 3,5-dinitrobenzoic acid (3,5-DNBA) dimers, the proton disorder deduced from data collected on an X-ray laboratory source is in agreement with that found from neutron data (3). This work focuses on variable temperature single crystal synchrotron X-ray diffraction, for the imaging of evolving hydrogen bonds. The development of appropriate methodology is important here, particularly as previous studies have involved laboratory X-ray sources only. Results will be presented from variable temperature data collections on I19, at the Diamond Light Source, and on beamline 11.3.1, at the Advanced Light Source (ALS), on systems such as 3,5-DNBA and co-crystals of benzimidazole, both exhibiting proton disorder across hydrogen bonding interactions. Synchrotron X-ray diffraction measurements have also been used to follow the change in the position of a proton within an intramolecular [N–H···N]+ hydrogen bond across a range of proton-sponge molecular complexes. Importantly, it has been possible to visualise the evolving hydrogen atom position in Fourier difference electron density maps generated from the synchrotron data. In particular, for the 35-DNBA study, the clearest picture of the evolving hydrogen atom position is observed in those generated from data collected at the ALS; even clearer than that observed in X-ray laboratory and neutron measurements on the same system.


Sign in / Sign up

Export Citation Format

Share Document