scholarly journals Crystal structure of di-μ-iodido-bis[(dimethyl sulfoxide-κO)(triphenylphosphane-κP)copper(I)]

2014 ◽  
Vol 70 (12) ◽  
pp. 547-549
Author(s):  
Rodolphe Kinghat ◽  
Michael Knorr ◽  
Yoann Rousselin ◽  
Marek M. Kubicki

The centrosymmetric dinuclear title compound, [Cu2I2(C2H6OS)2(C18H15P)2], represents the first example of a CuI complex ligated by anO-bound dimethyl sulfoxide ligand. In the crystal, the two tetrahedrally coordinated CuIatoms are bridged by two μ2-iodido ligands in an almost symmetrical rhomboid geometry. The loose Cu...Cu contact of 2.9874 (8) Å is longer than the sum of the van der Waals radii of two Cu atoms (2.8 Å), excluding a significant cupriophilic interaction in the actual dimer. C—H...O and C—H...I hydrogen bonding interactions as well as C—H...π(aryl) interactions stabilize the three-dimensional supramolecular network.

2015 ◽  
Vol 71 (10) ◽  
pp. 1219-1221 ◽  
Author(s):  
Alexander A. Golichenko ◽  
Alexander V. Shtemenko

The title compound, [Re2(C3H7COO)2Cl4{(CH3)2SO}2], comprises binuclear complex molecules [Re—Re = 2.24502 (13) Å] involvingcis-oriented double carboxylate bridges, four equatorial chloride ions and two weakly bonded O atoms from dimethyl sulfoxide ligands in the axial positions at the ReIIIatoms. In the crystal, molecules are linked into corrugated layers parallel to (101) by very weak C—H...Cl and C—H...O hydrogen-bonding interactions. C—H...Cl hydrogen bonding provides the links between layers to consolidate a three-dimensional framework.


2018 ◽  
Vol 74 (12) ◽  
pp. 1878-1880 ◽  
Author(s):  
Li Li ◽  
Dan Zhao ◽  
Zhi Liu ◽  
Dingchao Zhang ◽  
Zhenhao Hu ◽  
...  

The title compound, tris(1,1′-dibutyl-4,4′-bipyridine-1,1′-diium) bis(dimethyl sulfoxide)di-μ3-iodido-tetra-μ2-iodido-octaiodidotetralead(II) dimethyl sulfoxide disolvate, (C18H26N2)3[Pb4I14(C2H6OS)2]·2C2H6OS, belongs to a class of organic–inorganic hybrid materials with novel functionalities. In this compound, C—H...O and C—H...I hydrogen-bonding interactions, π–π interactions, other short contacts and Pb octahedral chains are present, extending the crystal structure into a three-dimensional supramolecular network.


2006 ◽  
Vol 62 (5) ◽  
pp. m1004-m1005 ◽  
Author(s):  
Shuang-Quan Zang ◽  
Yang Su ◽  
Ruo-Jie Tao

The title compound, (C13H10BrN2)[Ni(C3S5)2]·C3H6O, is a new ionic complex in which the NiIII atom exhibits a square-planar coordination involving four S atoms from two 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) ligands. In the crystal structure, weak S...S and hydrogen-bonding interactions form a three-dimensional supramolecular network.


2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


2007 ◽  
Vol 63 (3) ◽  
pp. m761-m763 ◽  
Author(s):  
Yan Jiao ◽  
Zhao-Rui Pan ◽  
Zhi-Jie Fang ◽  
Yi-Zhi Li ◽  
He-Gen Zheng

In the crystal structure of the title compound, [Ni(C6H4N2O4S)(H2O)3]·2.5H2O, the NiII atom is six-coordinated by one 2-(6-oxido-4-oxo-3,4-dihydropyimidin-2-ylsulfanyl)acetate ligand and three water molecules. Hydrogen-bonding interactions between the coordinated and uncoordinated water molecules and between the water molecules and the organic ligand result in a three-dimensional network structure.


2017 ◽  
Vol 73 (9) ◽  
pp. 1279-1281 ◽  
Author(s):  
Andrew J. Peloquin ◽  
Madelyn B. Smith ◽  
Gary J. Balaich ◽  
Scott T. Iacono

The title compound, [IrCl(C12H8NO)2{(CH3)2SO}]·H3CCN or [IrCl(fppy)2(DMSO)]·H3CCN [where fppy is 4-(pyridin-2-yl)benzaldehyde and DMSO is dimethyl sulfoxide], is a mononuclear iridium(III) complex including two fppy ligands, a sulfur-coordinating DMSO ligand, and one terminal chloride ligand that define a distorted octahedral coordination sphere. The complex crystallizes from 1:1 DMSO–acetonitrile as an acetonitrile solvate. In the crystal, weak C—H...O and C—H...N hydrogen-bonding interactions between adjacent complexes and between the acetonitrile solvent and the complex consolidate the packing.


2017 ◽  
Vol 73 (11) ◽  
pp. 1712-1715 ◽  
Author(s):  
Sergey N. Britvin ◽  
Andrey M. Rumyantsev

The structure of a salt of diprotonatedendo-3-aminotropane crystallized with a copper(II) anionic cluster is reported,viz.(C8H18N2)[CuCl3(NO3)(H2O)]. Neither ion in the salt has been structurally characterized previously. In the crystal, the ions pack together to form a three-dimensional structure held together by a network of intermolecular N—H...O, O—H...Cl and N—H...Cl hydrogen-bonding interactions. Selective crystallization of the title compound can be considered as a simple method for the separation of theexoandendoisomers of 3-aminotropane.


2015 ◽  
Vol 71 (2) ◽  
pp. 136-139
Author(s):  
Meng Wen ◽  
Zu-Ping Xiao ◽  
Chun-Ya Wang ◽  
Xi-He Huang

The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene-1,4-dicarboxylic acid (H2bdc) and 1,10-phenanthroline-5,6-dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3-OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2−ligands are fully deprotonated and adopt μ3-κO:κO′:κO′′ and μ4-κO:κO′:κO′′:κO′′′ coordination modes, bridging three or four ZnIIcations, respectively, from two Zn4(OH)2units. The Zn4(OH)2fragment connects six neighbouring tetranuclear units through four μ3-bdc2−and two μ4-bdc2−ligands, forming a three-dimensional framework with uninodal 6-connected α-Po topology, in which the tetranuclear Zn4(OH)2units are considered as 6-connected nodes and the bdc2−ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2unit and are connected to it through hydrogen-bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4-bdc2−ligands.


2017 ◽  
Vol 73 (11) ◽  
pp. 1721-1725 ◽  
Author(s):  
Amani Hind Benahsene ◽  
Lamia Bendjeddou ◽  
Hocine Merazig

In the title compound, the hydrated tetra(nitrate) salt of dapsone (4,4′-diaminodiphenylsulfone), 2C12H14N2O2S2+·4NO3−·H2O {alternative name: bis[bis(4,4′-diazaniumylphenyl) sulfone] tetranitrate monohydrate}, the cations are conformationally similar, with comparable dihedral angles between the two benzene rings in each of 70.03 (18) and 69.69 (19)°. In the crystal, mixed cation–anion–water molecule layers lying parallel to the (001) plane are formed through N—H...O, O—H...O and C—H...O hydrogen-bonding interactions and these layers are further extended into an overall three-dimensional supramolecular network structure. Inter-ring π–π interactions are also present [minimum ring centroid separation = 3.693 (3) Å].


2015 ◽  
Vol 71 (12) ◽  
pp. 1493-1496 ◽  
Author(s):  
Ghazala Naz ◽  
Muhammad Nawaz Tahir ◽  
Saeed Ahmad ◽  
Anvarhusein A. Isab ◽  
Mohammed Fettouhi

In the structure of the title compound, [CdCl2(C4H8N2S)2], the CdIIatom is coordinated by two chloride ions and two 1,3-diazinane-2-thione (Diaz) molecules through their S atoms. The geometry around the CdIIatom is distorted tetrahedral, with bond angles in the range 101.55 (7)–117.91 (8)°. The CH2groups of one Diaz ligand are disordered over two sets of sites with an occupancy ratio of 0.711 (12):0.289 (12). The molecular structure is stabilized by intramolecular N—H...Cl hydrogen-bonding interactions, generating a butterflysynconformation. Intermolecular N—H...Cl and N—H...S interactions lead to the formation of a three-dimensional network structure. The structure has been determined from a crystal twinned by nonmerohedry, by a 180° rotation around the reciprocalcaxis. The twin ratio refined to 0.8866 (6):0.1134 (6).


Sign in / Sign up

Export Citation Format

Share Document