Crystal structure of fractionally crystallized waxes isolated from crude oil

2017 ◽  
Vol 50 (2) ◽  
pp. 639-642
Author(s):  
Manisha Sahai ◽  
Ajay Kumar ◽  
Sanat Kumar

A petroleum wax has been extracted from crude oil and fractionated into two parts, depending on its solubility in methyl isobutyl ketone–toluene solvent at temperatures of 298 and 313 K. The wax and its two derivatives have been analyzed for composition and crystalline nature using various techniques including gas chromatography, NMR and X-ray diffraction. It has been observed that the crystalline structure of the fractionally precipitated waxes is significantly different from the structure of the parent wax present in the crude oil.

Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Abdullah M. Alhanash ◽  
Amal A. Atran ◽  
Murad Eissa ◽  
Mhamed Benaissa ◽  
Mohamed S. Hamdy

Four different metal nanoparticles (metal = Ag, Ru, Pt, or Rh) were impregnated on the acidic cesium salt of tungstophosphoric acid Cs2.5H0.5PW12O40 (CsPW) with a loading amount of 2 wt%. The prepared catalysts were characterized by using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), N2 sorption measurements, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Results confirmed the formation of highly distributed metallic nanoparticle centres over the acidic CsPW. The catalytic activity of the prepared catalysts were evaluated in the liquid phase hydrogenation of methyl isobutyl ketone (MIBK) to 2-methylpentane (2-MP) at 453 K. Pd-CsPW showed the highest activity compared to other catalysts, where 10% conversion was obtained with 91% selectivity after 4 h’s reaction time.


2015 ◽  
Vol 79 (5) ◽  
pp. 1111-1121 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Ramiza K. Rastsvetaeva ◽  
Konstantin A. Lyssenko ◽  
Dmitriy I. Belakovskiy ◽  
...  

AbstractThe new oxalate mineral antipinite is found in a guano deposit located on the Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile. Associated minerals are halite, salammoniac, chanabayaite, joanneumite and clays. Antipinite occurs as blue, imperfect, short prismatic crystals up to 0.1 mm × 0.1 mm × 0.15 mm in size, as well as their clusters and random aggregates. The mineral is brittle. Mohs hardness is 2; Dmeas = 2.53(3), Dcalc = 2.549 g cm–3. The infrared spectrum shows the presence of oxalate anions and the absence of absorptions associated with H2O molecules, C–H bonds, CO32–, NO3– and OH– ions. Antipinite is optically biaxial (+), α = 1.432(3), β = 1.530(1), γ = 1.698(5), 2Vmeas = 75(10)°, 2Vcalc = 82°. The chemical composition (electron-microprobe data, C measured by gas chromatography of products of ignition at 1200°C, wt.%) is Na2O 15.95, K2O 5.65, CuO 27.34, C2O3 48.64, total 99.58. The empirical formula is K0.96Na3.04Cu2.03(C2.00O4)4 and the idealized formula is KNa3Cu2(C2O4)4. The crystal structure was solved and refined to R = 0.033 based upon 4085 unique reflections with I > 2σ(I). Antipinite is triclinic, space group P1, a = 7.1574(5), b = 10.7099(8), c = 11.1320(8) Å, α = 113.093(1), β = 101.294(1), γ = 90.335 (1)°, V = 766.51(3) Å3, Z = 2. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%) (hkl)] are 5.22 (40) (111), 3.47 (100) (032), 3.39 (80) (210), 3.01 (30) (033, 220), 2.543 (40) (122, 034, 104), 2.481 (30) (213), 2.315 (30) (143, 310), 1.629 (30) (146, 414, 243, 160).


Sign in / Sign up

Export Citation Format

Share Document