new mineral species
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 51)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
pp. 1-30
Author(s):  
Ferdinando Bosi ◽  
Federico Pezzotta ◽  
Henrik Skogby ◽  
Alessandra Altieri ◽  
Ulf Hålenius ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1420
Author(s):  
Andrei Y. Barkov ◽  
Nadezhda D. Tolstykh ◽  
Nobumichi Tamura ◽  
Robert F. Martin ◽  
Andrew M. McDonald ◽  
...  

Ferrotorryweiserite, Rh5Fe10S16, occurs as small grains (≤20 µm) among droplet-like inclusions (up to 50 μm in diameter) of platinum-group minerals (PGM), in association with oberthürite or Rh-bearing pentlandite, laurite, and a Pt-Pd-Fe alloy (likely isoferroplatinum and Fe-Pd-enriched platinum), hosted by placer grains of Os-Ir alloy (≤0.5 mm) in the River Ko deposit. The latter is a part of the Sisim placer zone, which is likely derived from ultramafic units of the Lysanskiy layered complex, southern Krasnoyarskiy kray, Russia. The mineral is opaque, gray to brownish gray in reflected light, very weakly bireflectant, not pleochroic to weakly pleochroic (grayish to light brown tints), and weakly anisotropic. The calculated density is 5.93 g·cm–3. Mean results (and ranges) of four WDS analyses are: Ir 18.68 (15.55–21.96), Rh 18.34 (16.32–20.32), Pt 0.64 (0.19–1.14), Ru 0.03 (0.00–0.13), Os 0.07 (0.02–0.17), Fe 14.14 (13.63–14.64), Ni 13.63 (12.58–14.66), Cu 4.97 (3.42–6.41), Co 0.09 (0.07–0.11), S 29.06 (28.48–29.44), and total 99.66 wt. %. They correspond to the following formula calculated for a total of 31 atoms per formula unit: (Rh3.16Ir1.72Pt0.06Ru0.01Os0.01)Σ4.95(Fe4.48Ni4.11Cu1.38Co0.03)Σ10.00S16.05. The results of synchrotron micro-Laue diffraction studies indicate that ferrotorryweiserite is trigonal; its probable space group is Rm (#166) based on its Ni-analog, torryweiserite. The unit-cell parameters refined from 177 reflections are a = 7.069 (2) Å, c = 34.286 (11) Å, V = 1484 (1) Å3, and Z = 3. The c:a ratio is 4.8502. The strongest eight peaks in the X-ray diffraction pattern derived from results of micro-Laue diffraction study [d in Å(hkil)(I)] are 2.7950 (205) (100); 5.7143 (0006) (60); 1.7671 (220) (44.4); 3.0486 (201) (39.4); 5.7650 (102) (38.6); 2.5956 (207) (37.8); 3.0058 (116) (36.5); and 1.5029 (412) (35.3). Ferrotorryweiserite and the associated PGM crystallized from microvolumes of residual melt at late stages of crystallization of grains of Os- and Ir-dominant alloys occurred in lode zones of chromitites of the Lysanskiy layered complex. In a particular case, the residual melt is disposed peripherally around a core containing a disequilibrium association of magnesian olivine (Fo72.9–75.6) and albite (Ab81.6–86.4), with the development of skeletal crystals of titaniferous augite: Wo40.8–43.2En26.5–29.3Fs20.3–22.6Aeg6.9–9.5 (2.82–3.12 wt. % TiO2). Ferrotorryweiserite represents the Fe-dominant analog of torryweiserite. We also report occurrences of ferrotorryweiserite in the Marathon deposit, Coldwell Complex, Ontario, Canada, and infer the existence of the torryweiserite–ferrotorryweiserite solid solution in other deposits and complexes.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1409
Author(s):  
Gerson A. C. Lopes ◽  
Daniel Atencio ◽  
Javier Ellena ◽  
Marcelo B. Andrade

The roméite-group is part of the pyrochlore-supergroup and comprises cubic oxides of A2B2X6Y formula in which Sb5+ predominates in the B-site. The A and Y main occupants determine different minerals in the group and are important for the discovery of new mineral species. Two different roméite-group mineral samples were analysed by electron microprobe analysis (EMPA), Raman spectroscopy and single-crystal X-ray diffraction (XRD). The first sample is from Prabornaz Mine (locality of the original roméite), Saint Marcel, Valle d’Aosta, Italy, whereas the other one occurs in Kalugeri Hill, Babuna Valley, Jakupica Mountains, Nezilovo, Veles, Macedonia. Sample 1 was identified as fluorcalcioroméite, and sample 2 as hydroxycalcioroméite. Both samples belong to the cubic crystal system, space group Fd3¯m, Z = 8, where a = 10.2881(13) Å, V = 1088.9(4) Å3 for sample 1, and a = 10.2970(13) Å, V = 1091.8(4) Å3 for sample 2. The crystal structure refinements converged to (1) R1 = 0.016, wR2 = 0.042; and (2) R1 = 0.023, wR2 = 0.049. Bond-valence calculations validated the crystal structure refinements determining the correct valences at each crystallographic site. Discrepancies observed in the Sb5+ bond-valence calculations were solved with the use of the proper bond valence parameters. The resulting structural formulas are (Ca1.29Na0.55□0.11Pb0.05)Σ=2.00(Sb1.71Ti0.29)Σ=2.00[O5.73(OH)0.27]Σ=6.00[F0.77O0.21(OH)0.02]Σ=1.00 for sample 1, and (Ca1.30Ce0.51□0.19)Σ=2.00(Sb1.08Ti0.92)Σ=2.00O6.00[(OH)0.61O0.21F0.18]Σ=1.00 for sample 2. The Raman spectra of the samples exhibited the characteristic bands of roméite-group minerals, the most evident corresponding to the Sb-O stretching at around 510 cm−1.


2021 ◽  
pp. 1-25
Author(s):  
Fernando Cámara ◽  
Marco E. Ciriotti ◽  
Uwe Kolitsch ◽  
Ferdinando Bosi ◽  
Erica Bittarello ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel Atencio

The general formula of the pyrochlore-supergroup minerals is A2B2X6Y. The mineral names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation or H2O or vacancy) of the dominant valence at the Y-site. The second prefix refers to the dominant cation of the dominant valence [or H2O or vacancy] at the A-site. Thirty-one pyrochlore-supergroup mineral species are currently distributed into four groups [pyrochlore (B = Nb, X = O), microlite (B = Ta, X = O), roméite (B = Sb5+, X = O), and elsmoreite (B = W, X = O)] and two unassigned members [hydrokenoralstonite (B = Al, X = F) and fluornatrocoulsellite (B = Mg, X = F)]. However, when the new nomenclature system of this supergroup was introduced (2010) only seven mineral species, namely, oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite, and hydrokenoelsmoreite, were valid. The seven species belong to the cubic crystal system and space group Fd3¯m and O is predominant in the X structural site. The 24 new mineral species described between 2010 and 2021 are cesiokenopyrochlore, fluorcalciopyrochlore, fluornatropyrochlore, hydrokenopyrochlore, hydroxycalciopyrochlore, hydroxynatropyrochlore, hydroxykenopyrochlore, hydroxymanganopyrochlore, hydroxyplumbopyrochlore, fluorcalciomicrolite, fluornatromicrolite, hydrokenomicrolite, hydroxycalciomicrolite, kenoplumbomicrolite, oxynatromicrolite, oxycalciomicrolite, oxybismutomicrolite, fluorcalcioroméite, hydroxyferroroméite, oxycalcioroméite, oxyplumboroméite, fluornatrocoulsellite, hydrokenoralstonite, and hydroxykenoelsmoreite. Among the new species, hydroxycalciomicrolite belongs to a different space group of the cubic system, i.e., P4232. There are also some mineral species that crystallize in the trigonal system. Hydrokenoelsmoreite occurs as 3C (Fd3¯m) and 6R (R3¯) polytypes. Hydrokenomicrolite occurs as 3C (Fd3¯m) and 3R (R3¯m) polytypes, of which the latter corresponds to the discredited “parabariomicrolite.” Fluornatrocoulsellite crystallizes as 3R (R3¯m) polytype. Surely there are several new pyrochlore-supergroup minerals to be described.


Author(s):  
Hexiong Yang ◽  
Tommy Yong ◽  
Robert T. Downs

ABSTRACT A new mineral species, ferrobobfergusonite, ideally □Na2Fe2+5Fe3+Al(PO4)6, has been found in the Victory Mine, Custer County, South Dakota, USA. It is massive and associated with ferrowyllieite, schorl, fillowite, arrojadite, quartz, and muscovite. Broken pieces of ferrobobfergusonite are blocky or tabular with single crystals up to 0.9 × 0.7 × 0.4 mm. No twinning or parting is observed macroscopically. The mineral is deep green-brown and transparent with a pale green-yellow streak and vitreous luster. It is brittle and has a Mohs hardness of ∼5, with perfect cleavage on {010}. The measured and calculated densities are 3.68(1) and 3.69 g/cm3, respectively. Optically, ferrobobfergusonite is biaxial (+), with α = 1.698 (2), β = 1.705 (2), γ = 1.727 (2) (white light), 2V (meas.) = 65(2)°, 2V (calc.) = 60°, with orientation of the optic axes α ∧ X = 16°, β = Y, with X = yellowish brown, Y = brown, and Z = deep brown. The dispersion is very strong with r > v. The calculated compatibility index based on the empirical formula is 0.017 (superior). An electron microprobe analysis yielded an empirical formula (based on 24 O apfu) of (Na1.72□1.28)Σ3.00(Fe2+3.50Mn0.89Mg0.44Ca0.13)Σ4.96(Fe3+0.77Al0.23)Σ1.00Al(PO4)6. Ferrobobfergusonite is isostructural with bobfergusonite, a member of the alluaudite supergroup. It is monoclinic, with space group P21/n and unit-cell parameters a = 12.7156(3), b = 12.3808(3), c = 10.9347(3) Å, β = 97.3320(10)°, and V = 1707.37(7) Å3. The crystal structure of ferrobobfergusonite contains six octahedral M (= Fe2+, Mg, Mn2+, Al, Fe3+) sites and five X (= Na, Mn2+, Ca) sites with coordination numbers between 6 and 8. The six MO6 octahedra share edges to form two types of kinked chains extending along [101], with one consisting of M1–M4–M5 linkages and the other of M2–M3–M6 linkages. These chains are joined by PO4 tetrahedra to form sheets parallel to (010), which are linked together through corner-sharing between PO4 tetrahedra and MO6 octahedra in the adjacent sheets, leaving open channels parallel to a, where the large X cations are situated. The M cations are strongly ordered over the six sites, with M1, M2, M3, and M4 being dominantly occupied by Fe2+, and M5 and M6 by Fe3+ and Al, respectively. Among the five X sites, the X1 site is filled with Mn2+ and Ca, whereas the X2–X5 sites are partially occupied by Na.


2021 ◽  
Vol 59 (4) ◽  
pp. 763-769
Author(s):  
Hexiong Yang ◽  
Ronald B. Gibbs ◽  
Cody Schwenk ◽  
Xiande Xie ◽  
Xiangping Gu ◽  
...  

ABSTRACT A new mineral species, liudongshengite, ideally Zn4Cr2(OH)12(CO3)·3H2O, has been found in the 79 mine, Gila County, Arizona, USA. It occurs as micaceous aggregates or hexagonal platy crystals (up to 0.10 × 0.10 × 0.01 mm). The mineral is pinkish and transparent with white streak and vitreous luster. It is brittle and has a Mohs hardness of ∼1.5, with perfect cleavage on (001). No twinning or parting is observed macroscopically. The measured and calculated densities are 2.95 (3) and 3.00 g/cm3, respectively. Optically, liudongshengite is uniaxial (−), with ω = 1.720 (8), ε = 1.660 (7) (white light). An electron microprobe analysis, combined with the carbon content measured using an elemental combustion system equipped with mass spectrometry, yielded the empirical formula (Zn3.25Mg0.17Cr2.58)Σ6.00(OH)12(CO3)1.29·3H2O, based on (M2+ + M3+) = 6 apfu, where M2+ and M3+ are divalent and trivalent cations, respectively. Liudongshengite belongs to the quintinite group within the hydrotalcite supergroup and is the Cr-analogue of zaccagnaite-3R, Zn4Al2(OH)12(CO3)·3H2O. It is trigonal, with space group Rm and unit-cell parameters a = 3.1111(4), c = 22.682(3) Å, and V = 190.12(4) Å3. The crystal structure of liudongshengite is composed of positively charged brucite-like layers, [M2+1–xM3+x(OH)2]x+, alternating with negatively charged layers of (CO3)2–·3H2O. Compared to other minerals in the quintinite group, liudongshengite is remarkably enriched in M3+, with an M2+:M3+ ratio of 1.33:1. Like zaccagnaite-3R and many other hydrotalcite-type minerals, liudongshengite may also possess polytypes, as a series of synthetic hydrotalcite-type compounds with a general chemical formula [Zn4Cr2(OH)12]X2·4H2O, where X = Cl–, NO3–, or ½ SO42–, but with unit-cell parameters different from those for liudongshengite, have been reported previously.


2021 ◽  
Vol 7 ◽  
pp. 5-49
Author(s):  
A.V. Kasatkin ◽  
S.Yu. Stepanov ◽  
M.V. Tsyganko ◽  
R. Skoda ◽  
F. Nestola ◽  
...  

This paper continues a series of publications devoted to the mineralogy of the Vorontsovskoe gold deposit in the Northern Urals (Kasatkin et al., 2020, 2021). The article reports on sulfosalts of the deposit, their chemical compositions, as well as unit-cell parameters, optical properties and Raman spectra of some minerals. For eight new mineral species discovered by the authors (auerbakhite, vorontsovite, gladkovskyite, gungerite, luborzakite, pokhodyashinite, ferrovorontsovite, tsygankoite), we provide their density, hardness, refectance spectra and crystal structure. Arsiccioite, benavidesite, bernardite, boscardinite, veenite, weissbergite, vrbaite, heptasartorite, heteromorphite, guettardite, gillulyite, dalnegroite, drechslerite, sicherite, imhofte, christite, cupropolybasite, lafttite, lorandite, manganoquadratite, nowackiite, oyonite, parapierrotite, rebulite, roshchinite, twinnite, philrothite, hutchinsonite, stalderite, ecrinsite and enneasartorite are found for the frst time in Russian Federation.


Author(s):  
Hexiong Yang ◽  
Xiangping Gu ◽  
Bruce Cairncross ◽  
Robert T. Downs ◽  
Stanley H. Evans

ABSTRACT Two new mineral species, taniajacoite and strontioruizite, ideally SrCaMn3+2Si4O11(OH)4·2H2O and Sr2Mn3+2Si4O11(OH)4·2H2O, respectively, have been identified from the N'Chwaning III mine, Kalahari manganese field, South Africa. Both minerals occur as brown radiating groups or aggregates of acicular or prismatic crystals, with individual crystals up to 0.15 × 0.04 × 0.02 mm for taniajacoite and 1.3 × 0.2 × 0.2 mm for strontioruizite. Minerals associated with taniajacoite include sugilite, aegirine, pectolite, richterite, potassic-ferri-leakeite, and lipuite, whereas those associated with strontioruizite include sugilite, potassic-magnesio-arfvedsonite, and lipuite. Both taniajacoite and strontioruizite are brown in transmitted light, transparent with very light brown streak and vitreous luster. They are brittle and have a Mohs hardness of 5–5.5; cleavage is good on {010} and no parting or twinning is observed macroscopically. The measured and calculated densities are 3.05(2) and 3.09 g/cm3, respectively, for taniajacoite and 3.20(2) and 3.16 g/cm3 for strontioruizite. Optically, both taniajacoite and strontioruizite are biaxial (–), with α = 1.686(2), β = 1.729(2), γ = 1.746(2) (white light), 2V (meas.) = 63.7(5)°, 2V (calc.) = 62.5° for the former and α = 1.692(2), β = 1.734(2), γ = 1.747(2) (white light), 2V (meas.) = 59.1(5)°, 2V (calc.) = 56.6° for the latter. The calculated compatibility index based on the empirical formula is 0.008 for taniajacoite and 0.015 for strontioruizite. An electron microprobe analysis yielded an empirical formula (based on 17 O apfu) of Sr(Ca0.81Sr0.19)Σ1.00(Mn3+1.90Fe3+0.15Al0.01)Σ2.06Si3.96O11(OH)4·2H2O for taniajacoite and (Sr1.61Ca0.42)Σ2.03(Mn3+1.95Fe3+0.05)Σ2.00Si3.98O11(OH)4·2H2O for strontioruizite. Taniajacoite and strontioruizite are isostructural with ruizite. Strontioruizite, like ruizite, is monoclinic with space group C2 and unit-cell parameters a = 9.1575(4), b = 6.2857(4), c = 12.0431(6) Å, β = 91.744(4)°, and V = 692.90(6) Å3, whereas taniajacoite is triclinic, with space group C1 and a = 9.1386(5), b = 6.2566(3), c = 12.0043(6) Å, α = 90.019(4), β = 91.643(4), γ = 89.900(4)°, and V = 686.08(6) Å3. Their structures are characterized by chains of edge-sharing MnO6 octahedra extended along [010], which are linked together by corner-shared SiO4 tetrahedra in four-membered [Si4O11(OH)2] linear clusters, giving rise to a so-called “hetero-polyhedral framework”. The large cations Sr2+ and Ca2+ occupy the seven-coordinated interstices. Unlike monoclinic ruizite and strontioruizite, taniajacoite with Sr:Ca ≈ 1:1 is triclinic, owing to the ordering of Sr2+ and Ca2+ into two crystallographically distinct sites, indicating an incomplete solid solution between Ca and Sr endmembers. The unit-cell volumes for ruizite, taniajacoite, and strontioruizite appear to vary linearly with the Sr/(Ca + Sr) ratio.


Sign in / Sign up

Export Citation Format

Share Document