scholarly journals Growing a thriving international community for small-angle scattering through collaboration. Corrigendum

2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Jill Trewhella

Errors in the article by Jill Trewhella [J. Appl. Cryst. (2021), 54, 1029–1033] are corrected.

2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Jill Trewhella

Small-angle scattering emerged as a tool for studying noncrystalline structures from early observations around 1930 that there was a relationship between the extent of the scattering and the size of the scattering object. André Guinier, a leading figure in the development of the field, noted in his summary findings from the first Conference on Small Angle Scattering in 1958 that the technique would be of value to study `submicroscopical inhomogeneities' and further provided a means of `observation [that had] in the past restricted the field of application of the X-ray method.' In 1965 the first of what became a highly successful series of Small-Angle Scattering (SAS) meetings held approximately every three years took place in Syracuse, NY, USA, and many of these ongoing meetings published their proceedings and highlights in the International Union of Crystallography (IUCr) Journal of Applied Crystallography. Since the early 2000s, the relationship between the international SAS community represented at the triennial SAS meetings and the IUCr has been strengthened and deepened through formal cooperation and collaboration in a number of mutually beneficial activities that have supported the growth and health of the field and the IUCr.


1993 ◽  
Vol 03 (C8) ◽  
pp. C8-393-C8-396
Author(s):  
T. P.M. BEELEN ◽  
W. H. DOKTER ◽  
H. F. VAN GARDEREN ◽  
R. A. VAN SANTEN ◽  
E. PANTOS

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120304
Author(s):  
T. Vasilenko ◽  
A. Kirillov ◽  
A. Islamov ◽  
A. Doroshkevich

2009 ◽  
Vol 43 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Gerald J. Schneider ◽  
D. Göritz

A novel theory is presented which allows, for the first time, the analytical description of small-angle scattering experiments on anisotropic shaped clusters of nanoparticles. Experimentally, silica-filled rubber which is deformed is used as an example. The silica can be modelled by solid spheres which form clusters. The experiments demonstrate that the clusters become anisotropic as a result of the deformation whereas the spheres are not affected. A comparison of the newly derived model function and the experiments provides, for the first time, microscopic evidence of the inhomogeneous deformation of clusters in the rubbery matrix.


2017 ◽  
Vol 73 (9) ◽  
pp. 710-728 ◽  
Author(s):  
Jill Trewhella ◽  
Anthony P. Duff ◽  
Dominique Durand ◽  
Frank Gabel ◽  
J. Mitchell Guss ◽  
...  

In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.


Sign in / Sign up

Export Citation Format

Share Document