scholarly journals Growing a thriving international community for small-angle scattering through collaboration

2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Jill Trewhella

Small-angle scattering emerged as a tool for studying noncrystalline structures from early observations around 1930 that there was a relationship between the extent of the scattering and the size of the scattering object. André Guinier, a leading figure in the development of the field, noted in his summary findings from the first Conference on Small Angle Scattering in 1958 that the technique would be of value to study `submicroscopical inhomogeneities' and further provided a means of `observation [that had] in the past restricted the field of application of the X-ray method.' In 1965 the first of what became a highly successful series of Small-Angle Scattering (SAS) meetings held approximately every three years took place in Syracuse, NY, USA, and many of these ongoing meetings published their proceedings and highlights in the International Union of Crystallography (IUCr) Journal of Applied Crystallography. Since the early 2000s, the relationship between the international SAS community represented at the triennial SAS meetings and the IUCr has been strengthened and deepened through formal cooperation and collaboration in a number of mutually beneficial activities that have supported the growth and health of the field and the IUCr.

1988 ◽  
Vol 97 ◽  
pp. 227-230 ◽  
Author(s):  
P. Lamparter ◽  
S. Steeb ◽  
D.M. Kroeger ◽  
S. Spooner

1977 ◽  
Vol 10 (1) ◽  
pp. 37-44 ◽  
Author(s):  
C. Cabos ◽  
P. Delord ◽  
J. Rouviere

The structure of micellar solutions is determined from X-ray small-angle scattering measurements on an absolute scale. The most probable structure is chosen by comparison with spherical cylindrical and lamellar models. This method is applied to two-component micelles and it is possible to follow the variation of micellar dimensions when the concentration of each component is varying.


1981 ◽  
Vol 4 (4) ◽  
pp. 225-231 ◽  
Author(s):  
J. Pleštil ◽  
J. Mikeš ◽  
K. Dušek ◽  
Ju. M. Ostanevich ◽  
A. B. Kunchenko

1989 ◽  
Vol 66 (2) ◽  
pp. 625-628 ◽  
Author(s):  
P. Goudeau ◽  
A. Naudon ◽  
G. Bomchil ◽  
R. Herino

1983 ◽  
Vol 16 (1) ◽  
pp. 42-46 ◽  
Author(s):  
O. Glatter ◽  
P. Laggner

The possibilities of obtaining structural information from X-ray small-angle scattering experiments with `white' polychromatic synchrotron radiation using line collimation are investigated by numerical simulation. Theoretical scattering curves of geometrical models were smeared with the appropriate wavelength distributions and slit-length functions, afflicted by statistical noise, and then evaluated by identical methods as normally used for experimental data, as described previously [program ITP; Glatter (1977). J. Appl. Cryst. 10, 415–421]. It is shown that even for a wavelength distribution of 50% half width, the information content is not limited to the parameters derived from the central part of the scattering curves, i.e. the radius of gyration and the zero-angle intensity, but also allows qualitative information on particle shape via the distance distribution function p(r). By a `hinge-bending model' consisting of two cylinders linked together at different angles it is demonstrated that changes in the radius of gyration amounting to less than 5% can be detected and quantified, and the qualitative changes in particle shape be reproduced.


1977 ◽  
Vol 77 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Peter LAGGNER ◽  
Otto GLATTER ◽  
Karl MULLER ◽  
Otto KRATKY ◽  
Gerhard KOSTNER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document