Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump–optical probe

2016 ◽  
Vol 23 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Jae-Kun Jeon ◽  
Sung-Mi Han ◽  
Jong-Ki Kim

Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0–1000 eV), as well as X-ray fluorescence produced by irradiation of large-Zelement nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5–14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4′-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\bullet{\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.

1991 ◽  
Vol 98 (1) ◽  
pp. 99-105
Author(s):  
D. Hernandez-Verdun ◽  
M. Robert-Nicoud ◽  
G. Geraud ◽  
C. Masson

The behaviour of nucleolar proteins in cycling PtK1 cells and in micronuclei with or without NORs was investigated by immunofluorescence using antibodies from autoimmune sera and confocal laser scanning microscopy. These antibodies were shown by electron microscopy to recognize antigens confined to only one of the three basic nucleolar components: fibrillar centres (FC), dense fibrillar component (DFC) and granular component (GC). Serial optical sections allowed us to determine the three-dimensional organization of these components in the nucleolus of cycling cells. Furthermore, clear differences were found in the distribution of the various antigens in micronucleated cells. Three patterns could be observed: (1) the FC antigens were found mainly in the nucleoli, but also in varying amounts in the dots; (2) surprisingly, the DFC antigens were found to accumulate preferentially in the dots; (3) the GC-specific marker stained intensively the nucleoli as well the dots. The results are interpreted with regard to possible mechanisms for targeting nucleolar proteins to the site of nucleolar formation.


Sign in / Sign up

Export Citation Format

Share Document