scholarly journals Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. Corrigendum

IUCrJ ◽  
2015 ◽  
Vol 2 (5) ◽  
pp. 601-601 ◽  
Author(s):  
Michael Heymann ◽  
Achini Opathalage ◽  
Jennifer L. Wierman ◽  
Sathish Akella ◽  
Doletha M. E. Szebenyi ◽  
...  

The name of one of the authors in the article by Heymannet al.[(2014),IUCrJ,1, 349–360] is corrected.

IUCrJ ◽  
2014 ◽  
Vol 1 (5) ◽  
pp. 349-360 ◽  
Author(s):  
Michael Heymann ◽  
Achini Opthalage ◽  
Jennifer L. Wierman ◽  
Sathish Akella ◽  
Doletha M. E. Szebenyi ◽  
...  

An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 296-310 ◽  
Author(s):  
Niels Junius ◽  
Sofia Jaho ◽  
Yoann Sallaz-Damaz ◽  
Franck Borel ◽  
Jean-Baptiste Salmon ◽  
...  

This paper reports a versatile microfluidic chip developed for on-chip crystallization of proteins through the dialysis method and in situ X-ray diffraction experiments.


IUCrJ ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 454-464 ◽  
Author(s):  
Raphaël de Wijn ◽  
Oliver Hennig ◽  
Jennifer Roche ◽  
Sylvain Engilberge ◽  
Kevin Rollet ◽  
...  

Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine `non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.


IUCrJ ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 1009-1018
Author(s):  
Zhong Ren ◽  
Cong Wang ◽  
Heewhan Shin ◽  
Sepalika Bandara ◽  
Indika Kumarapperuma ◽  
...  

Direct observation of functional motions in protein structures is highly desirable for understanding how these nanomachineries of life operate at the molecular level. Because cryogenic temperatures are non-physiological and may prohibit or even alter protein structural dynamics, it is necessary to develop robust X-ray diffraction methods that enable routine data collection at room temperature. We recently reported a crystal-on-crystal device to facilitate in situ diffraction of protein crystals at room temperature devoid of any sample manipulation. Here an automated serial crystallography platform based on this crystal-on-crystal technology is presented. A hardware and software prototype has been implemented, and protocols have been established that allow users to image, recognize and rank hundreds to thousands of protein crystals grown on a chip in optical scanning mode prior to serial introduction of these crystals to an X-ray beam in a programmable and high-throughput manner. This platform has been tested extensively using fragile protein crystals. We demonstrate that with affordable sample consumption, this in situ serial crystallography technology could give rise to room-temperature protein structures of higher resolution and superior map quality for those protein crystals that encounter difficulties during freezing. This serial data collection platform is compatible with both monochromatic oscillation and Laue methods for X-ray diffraction and presents a widely applicable approach for static and dynamic crystallographic studies at room temperature.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Sign in / Sign up

Export Citation Format

Share Document