Two novel ferrocenyl dipeptide-like compounds generatedviathe Ugi four-component reaction

2015 ◽  
Vol 71 (8) ◽  
pp. 667-672
Author(s):  
Guang-Kui Shao ◽  
Mei Zhao ◽  
Zheng Wei ◽  
Jian-Ping Ma ◽  
Dian-Shun Guo

The Ugi four-component reaction, a powerful method for the synthesis of diverse dipeptide-like derivatives in combinatorial chemistry, was used to synthesize (S)-1′-{N-[1-(anthracen-9-yl)-2-(tert-butylamino)-2-oxoethyl]-N-(4-methoxyphenyl)carbamoyl}ferrocene-1-carboxylic acid dichloromethane disolvate, [Fe(C6H5O2)(C33H31N2O3)]·2CH2Cl2, (I), and (S)-2-(anthracen-9-yl)-N-tert-butyl-2-[N-(4-methylphenyl)ferrocenylformamido]acetamide, [Fe(C5H5)(C33H31N2O2)], (II). They adopt broadly similar molecular conformations, with near-eclipsed cyclopentadienyl rings and near-perpendicular amide planes in their dipeptide-like chains, one of which is almost coplanar with its attached cyclopentadienyl ring but perpendicular to the aromatic ring bound to the N atom. In the supramolecular structure of (I), a two-dimensional network is constructed based on molecular dimers and a combination of intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, formingR22(11),R22(16),R22(22) andC(9) motifs. These two-dimensional networks are connected by C—H...O and C—H...Cl contacts to create a three-dimensional framework, where one dichloromethane solvent molecule acts as a bridge between two neighbouring networks. In the packing of (II), classical hydrogen bonds are absent and an infinite one-dimensional chain is generatedviaa combination of C—H...O hydrogen bonds and C—H...π interactions, producing aC(7) motif. This work describes a simple synthesis and the supramolecuar structures of ferrocenyl dipeptide-like compounds and is significant in the development of redox-active receptors.

2011 ◽  
Vol 66 (5) ◽  
pp. 459-464 ◽  
Author(s):  
Chao Xu ◽  
Sheng-Bo Liu ◽  
Taike Duan ◽  
Qun Chen ◽  
Qian-Feng Zhang

Two novel cadmium coordination polymers, [Cd(pydc)2(tu)]n (1) and [Cd2(SO4)(nic)2(tu)1.5 - (H2O)2]n (2) (pydc = pyridine-2,3-dicarboxylate, nic = nicotinate, tu = thiourea), have been synthesized under hydrothermal conditions and structurally characterized by X-ray diffraction analysis. 1 is a one-dimensional ladder coordination polymer in a two-dimensional network formed by hydrogen bonds. 2 consists of two kinds of Cd(II) centers in different coordination environments connected via nicotinate and sulfate to form a two-dimensional grid network integrated in a three-dimensional framework generated by hydrogen bonds. 2 shows intense fluorescent emission in the solid state at room temperature


2013 ◽  
Vol 69 (12) ◽  
pp. 1488-1493 ◽  
Author(s):  
Yan-Fei Liu ◽  
Chao-Wei Zhao ◽  
Jian-Ping Ma ◽  
Qi-Kui Liu ◽  
Yu-Bin Dong

Two novel symmetric fluorene-based ligands, namely, 2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene [L1 or (I), C21H18N4] and 2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene (L2), have been used to construct the coordination polymerscatena-poly[[dichloridodicopper(I)(Cu—Cu)]-μ-2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene], [Cu2Cl2(C21H18N4)]n, (II), andcatena-poly[[tetra-μ2-chlorido-tetracopper(I)]-bis[μ-2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene]], [Cu4Cl4(C25H26N4)2]n, (III). There are three types of C—H...N hydrogen bonds in (I), resulting a two-dimensional network in theabplane, including a chiral helical chain along thebaxis. Compounds (II) and (III) are related one-dimensional polymers. In both, CuIatoms connect the symmetric ligands (L1 orL2) into a one-dimensional chain. In (II), the {[CuICl2]−} unit, acting as a co-anion, adheres to the one-dimensional chain through a weak Cu...Cu interaction. However, in (III), the {[CuI2Cl4]2−} unit links two different chains into a one-dimensional rope-ladder-type chain. In addition, there are C—H...Cl hydrogen bonds and π–π interactions in the extended structures of (II) and (III), the difference is that the chains in (II) are linked into a two-dimensional network while the chains in (III) are stacked into a three-dimensional framework.


2015 ◽  
Vol 71 (4) ◽  
pp. 242-246 ◽  
Author(s):  
Hao Guo ◽  
Jinfeng Wu

Two inclusion compounds of dithiobiurea and tetrapropylammonium and tetrabutylammonium are characterized and reported, namely tetrapropylammonium carbamothioyl(carbamothioylamino)azanide, C12H28N+·C2H5N4S2−, (1), and tetrabutylammonium carbamothioyl(carbamothioylamino)azanide, C16H36N+·C2H5N4S2−, (2). The results show that in (1), the dithiobiurea anion forms a dimerviaN—H...N hydrogen bonds and the dimers are connected into wide hydrogen-bonded ribbons. The guest tetrapropylammonium cation changes its character to become the host molecule, generating pseudo-channels containing the aforementioned ribbons by C—H...S contacts, yielding the three-dimensional network structure. In comparison, in (2), the dithiobiurea anions are linkedviaN—H...S interactions, producing one-dimensional chains which pack to generate two-dimensional hydrogen-bonded layers. These layers accommodate the guest tetrabutylammonium cations, resulting in a sandwich-like layer structure with host–guest C—H...S contacts.


2012 ◽  
Vol 68 (6) ◽  
pp. o1601-o1602 ◽  
Author(s):  
Fadila Berrah ◽  
Sofiane Bouacida ◽  
Hayet Anana ◽  
Thierry Roisnel

The asymmetric unit includes two crystallographically independent equivalents of the title salt, C6H7N2O2 +·ClO4 −. The cations and anions form separate layers alternating along the c axis, which are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into a two-dimensional network parallel to (100). Further C—H...O contacts connect these layers, forming a three-dimensional network, in which R 4 4(20) rings and C 2 2(11) infinite chains can be identified.


2012 ◽  
Vol 68 (5) ◽  
pp. o188-o194 ◽  
Author(s):  
Andreas Lemmerer ◽  
Manuel A. Fernandes

Six ammonium carboxylate salts, namely cyclopentylammonium cinnamate, C5H12N+·C9H7O2−, (I), cyclohexylammonium cinnamate, C6H14N+·C9H7O2−, (II), cycloheptylammonium cinnamate form I, C7H16N+·C9H7O2−, (IIIa), and form II, (IIIb), cyclooctylammonium cinnamate, C8H18N+·C9H7O2−, (IV), and cyclododecylammonium cinnamate, C12H26N+·C9H7O2−, (V), are reported. Salts (II)–(V) all have a 1:1 ratio of cation to anion and feature three N+—H...O−hydrogen bonds forming one-dimensional hydrogen-bonded columns consisting of repeatingR43(10) rings, while salt (I) has a two-dimensional network made up of alternatingR44(12) andR68(20) rings. Salt (III) consists of two polymorphic forms,viz.form I havingZ′ = 1 and form II withZ′ = 2. The latter polymorph has disorder of the cycloheptane rings in the two cations, as well as whole-molecule disorder of one of the cinnamate anions. A similar, but ordered,Z′ = 2 structure is seen in salt (IV).


IUCrData ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kai-Long Zhong ◽  
Guo-Qing Cao ◽  
Wei Song ◽  
Chao Ni

In the complex cation of the title salt, [Co(C12H8N2)3](C10H5O8)2·H2O, the CoII cation is situated on a twofold rotation axis and is coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands. In the crystal, the non-coordinating 2,4,5-tricarboxybenzoate anions interact with each other via O—H...O hydrogen bonds, generating a two-dimensional network parallel to (100). Adjacent sheets are connected by waterO—H...Ocarboxylate hydrogen bonds, resulting in a three-dimensional network structure that surrounds the complex cations.


2014 ◽  
Vol 70 (6) ◽  
pp. o683-o684 ◽  
Author(s):  
Thammarse S. Yamuna ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
H.S. Yathirajan

In the cation of the title solvated molecular salt, C12H14ClN4+·C14H8F3O2S−·C2H6OS [systematic name of the cation: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium], the dihedral angle between the planes of the pyrimidinium and 4-chlorophenyl rings is 77.2 (5)°. In the anion, the planes of the benzene rings are twisted with respect to each other by 71.5 (5)°. Disorder was modelled for the dimethyl sulfoxide solvent molecule over two set of sites in a 0.7487 (13):0.2513 (13) ratio. In the crystal, the cations are linked by inversion-generated pairs of N—H...N hydrogen bonds, with anR22(8) graph-set motif. The cation donates two N—H...O hydrogen bonds to the anion, also generating anR22(8) loop. These interactions, along with cation–solvent N—H...O hydrogen bonds, and cation–anion C—H...F, solvent–anion C—H...O and C—H...F interactions, result in a three-dimensional network.


2013 ◽  
Vol 69 (10) ◽  
pp. 1140-1143 ◽  
Author(s):  
Masoud Mirzaei ◽  
Hossein Eshtiagh-Hosseini ◽  
Zahra Karrabi ◽  
Behrouz Notash

4-Hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid, hypydc[H]H2) reacts with MnCl2·2H2O in the presence of piperazine in water to afford the title complex, {[Mn3(C7H2NO5)2(H2O)8]·3H2O}nor {[Mn3(hypydc)2(H2O)8]·3H2O}n. This compound is a one-dimensional coordination polymer, with the twofold symmetric repeat unit containing three metal centres. Two different coordination geometries are observed for the two independent MnIImetal centres,viz.a distorted pentagonal bipyramid and a distorted octahedron. The 4-oxidopyridine-2,6-dicarboxylate anions and two of the water molecules act as bridging ligands. The zigzag-like geometry of the coordination polymer is stabilized by hydrogen bonds. O—H...O and C—H...O hydrogen bonds and water clusters consolidate the three-dimensional network structure.


2006 ◽  
Vol 62 (4) ◽  
pp. o1529-o1531 ◽  
Author(s):  
Li-Ping Zhang ◽  
Long-Guan Zhu

In the crystal structure of the title organic proton-transfer complex, 2C12H11N2 +·C7H4O5S2−·3H2O, the cations form one-dimensional chains via intermolecular N—H...N hydrogen bonds and these chains, in turn, form a two-dimensional network through π–π stacking interactions. In addition, the anions and water molecules are connected into a two-dimensional hydrogen-bonded network through intermolecular O—H...O hydrogen bonds. The two motifs result in sheets of cations and anions stacked alternately.


2014 ◽  
Vol 70 (5) ◽  
pp. o534-o535
Author(s):  
Zhen-Zhe Qiu ◽  
Bi Jing ◽  
Qiu-Xia Li ◽  
Ai-Xin Zhu

In the title solvate, C22H18O6·2C3H7NO, the complete dicarboxylic acid molecule is generated by a crystallographic twofold axis, which bisects the central benzene ring and oneN,N-dimethylformamide solvent molecule. The dihedral angle between the central and pendant benzene rings is 54.53 (5)° while that between the pendant rings is 45.44 (5)°. In the crystal, the acid molecules are linked to the solvent moleculesviaO—H...O and weak C—H...O hydrogen bonds. Further weak C—H...O interactions link adjacent acid molecules into a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document