Solid-state NMR meets electron diffraction: determination of crystalline polymorphs of small organic microcrystalline samples

2017 ◽  
Vol 73 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Tetsuo Oikawa ◽  
Manabu Okumura ◽  
Tsunehisa Kimura ◽  
Yusuke Nishiyama

A combination of solid-state NMR (ssNMR) and electron diffraction (ED) has been used to determine the crystalline polymorphs in small-organic microcrystalline molecules. Although 13C cross-polarization magic angle spinning (CPMAS) is a widely used method for determining crystalline polymorphs, even in a mixture, it sometimes fails if the molecular conformations are similar. On the other hand, ED can, in principle, differentiate crystalline forms with different lattice parameters, even when they have very similar molecular conformations. However, its application is usually limited to inorganic molecules only. This is because the ED measurements of organic molecules are very challenging due to degradation of the sample by electron irradiation. We overcame these difficulties by the use of 1H double-quantum/single-quantum correlation experiments at very fast magic angle spinning, together with ED observations under mild electron irradiation. The experiments were demonstrated on L-histidine samples in L-histidine·HCl·H2O, orthorhombic L-histidine and monoclinic L-histidine.

2019 ◽  
Vol 20 (24) ◽  
pp. 6356 ◽  
Author(s):  
Yang Yu ◽  
Baltzar Stevensson ◽  
Michael Pujari-Palmer ◽  
Hua Guo ◽  
Håkan Engqvist ◽  
...  

We present a solid-state nuclear magnetic resonance (NMR) spectroscopy study of the local 31 P and 1 H environments in monetite [CaHPO 4 ; dicalcium phosphate anhydrous (DCPA)], as well as their relative spatial proximities. Each of the three 1 H NMR peaks was unambiguously assigned to its respective crystallographically unique H site of monetite, while their pairwise spatial proximities were probed by homonuclear 1 H– 1 H double quantum–single quantum NMR experimentation under fast magic-angle spinning (MAS) of 66 kHz. We also examined the relative 1 H– 31 P proximities among the inequivalent {P1, P2} and {H1, H2, H3} sites in monetite; the corresponding shortest internuclear 1 H– 31 P distances accorded well with those of a previous neutron diffraction study. The NMR results from the monetite phase were also contrasted with those observed from the monetite component present in a pyrophosphate-bearing calcium phosphate cement, demonstrating that while the latter represents a disordered form of monetite, it shares all essential local features of the monetite structure.


2007 ◽  
Vol 40 (25) ◽  
pp. 9018-9025 ◽  
Author(s):  
Xiaoliang Wang ◽  
Qiang Gu ◽  
Qing Sun ◽  
Dongshan Zhou ◽  
Pingchuan Sun ◽  
...  

2007 ◽  
Vol 1008 ◽  
Author(s):  
Christian Bonhomme ◽  
Geoffrey Hartmeyer ◽  
Florence Babonneau ◽  
Michel Wong Chi Man ◽  
Guilhem Arrachart ◽  
...  

AbstractMaterials based on ureidopyrimidinone (UPY) dimers and Adenine (A) / Thymine (T) derivatives were synthesized and characterized by advanced solid state NMR (Nuclear Magnetic Resonance) techniques. Silylated UPY molecules were used as model compounds, leading to structured organic-inorganic materials after hydrolysis and condensation processes (sol-gel reactions). High resolution 1H solid state NMR has been extensively used for the in-depth description of the H-bond networks, including very fast MAS (Magic Angle Spinning) experiments at very high field and DQ (double quantum) recoupling experiments. The chemical nature of the organic-inorganic interface has been illuminated by such techniques. In, particular, it has been demonstrated that H-bond networks were preserved during sol-gel reactions and were comparable to those observed in the UPY crystalline precursors.


2011 ◽  
Vol 208 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Yusuke Nishiyama ◽  
Yuki Endo ◽  
Takahiro Nemoto ◽  
Hiroaki Utsumi ◽  
Kazuo Yamauchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document