scholarly journals Crystal structure of anagyrine perchlorate

2015 ◽  
Vol 71 (5) ◽  
pp. o343-o344 ◽  
Author(s):  
Kambarali K. Turgunov ◽  
Shukhrat B. Rakhimov ◽  
Valentina I. Vinogradova ◽  
Bakhodir Tashkhodjaev

The title molecular salt, C15H21N2O+·ClO4−, crystallizes with four cations (A,B,CandD) and four anions in the chiral unit cell (space groupP21). The alkaloid was isolated from the aerial parts ofGenista Hispanicacollected in the Samarkand region of Uzbekistan. Each cation is protonated at the N atom that bridges the alkaloid ringsCandD. In each cation, ringAis almost planar and ringBadops a sofa conformation with the methylene group bridging to theCring as the flap. RingsCandDadopt chair conformations with acisring junction in all four cations. In the crystal,A+BandC+Ddimeric pairs linked by pairs of N—H...O hydrogen bonds are observed, which generateR22(16) loops in each case. The dimers are consolidated by weak aromatic π–π stacking interactions between theArings [centroid–centroid distances = 3.913 (3) and 3.915 (3) Å].

2017 ◽  
Vol 73 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Marisiddaiah Girisha ◽  
Belakavadi K. Sagar ◽  
Hemmige S. Yathirajan ◽  
Ravindranath S. Rathore ◽  
Christopher Glidewell

It has been observed that when electron-rich naphthyl rings are present in chalcones they can participate in π–π stacking interactions, and this can play an important role in orientating inhibitors within the active sites of enzymes, while chalcones containing heterocyclic substituents additionally exhibit fungistatic and fungicidal properties. With these considerations in mind, three new chalcones containing 2-naphthyl substituents were prepared. 3-(4-Fluorophenyl)-1-(naphthalen-2-yl)prop-2-en-1-one, C19H13FO, (I), crystallizes withZ′ = 2 in the space groupP-1 and the four molecules in the unit cell adopt an arrangement which resembles that in the space groupP21/a. Although 3-(4-bromophenyl)-1-(naphthalen-2-yl)prop-2-en-1-one, C19H13BrO, (II), withZ′ = 1, is not isostructural with (I), the molecules of (I) and (II) adopt very similar conformations. In 1-(naphthalen-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one, C17H12OS, (III), the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.780 (3) and 0.220 (3), which are related by a near 180° rotation of the thiophene unit about its exocyclic C—C bond. The molecules of compound (I) are linked by three independent C—H...π(arene) hydrogen bonds to form centrosymmetric octamolecular aggregates, whereas the molecules of compound (II) are linked into molecular ladders by a combination of C—H...π(arene) and C—Br...π(arene) interactions, and those of compound (III) are linked into centrosymmetric dimers by C—H...π(thiophene) interactions.


2014 ◽  
Vol 70 (11) ◽  
pp. o1197-o1198
Author(s):  
Patrick C. Hillesheim ◽  
Kent A. Scipione ◽  
Sean L. Stokes

In the title molecular salt, C22H22O2P+·PF6−, the side chain of the cation adopts ananti–gaucheconformation [P—C—C—C and C—C—C—C torsion angles = −179.11 (10) and −77.18 (16)°, respectively]. In the crystal, the cations are linked into carboxylic acid inversion dimers by pairs of O—H...O hydrogen bonds. Weak C—H...F and C—H...(F,F) hydrogen bonds connect the components into a three-dimensional network, but there are no aromatic π–π stacking interactions.


2014 ◽  
Vol 70 (10) ◽  
pp. o1130-o1130 ◽  
Author(s):  
Wataru Furukawa ◽  
Munenori Takehara ◽  
Yoshinori Inoue ◽  
Chitoshi Kitamura

In an attempt to brominate 1,4-dipropoxy-9,10-anthraquinone, a mixture of products, including the title compound, C14H7BrO4, was obtained. The molecule is essentially planar (r.m.s. deviation = 0.029 Å) and two intramolecular O—H...O hydrogen bonds occur. In the crystal, the molecules are linked by weak C—H...O hydrogen bonds, Br...O contacts [3.240 (5) Å], and π–π stacking interactions [shortest centroid–centroid separation = 3.562 (4) Å], generating a three-dimensional network.


2001 ◽  
Vol 58 (1) ◽  
pp. 94-108 ◽  
Author(s):  
Craig J. Kelly ◽  
Janet M. S. Skakle ◽  
James L. Wardell ◽  
Solange M. S. V. Wardell ◽  
John N. Low ◽  
...  

Molecules of N-(4′-iodophenylsulfonyl)-4-nitroaniline, 4-O2NC6H4NHSO2C6H4I-4′ (1), are linked by three-centre I...O2N interactions into chains and these chains are linked into a three-dimensional framework by C—H...O hydrogen bonds. In the isomeric N-(4′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4NHSO2C6H4NO2-4′ (2), the chains generated by the I...O2N interactions are again linked into a three-dimensional framework by C—H...O hydrogen bonds. Molecules of N,N-bis(3′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4N(SO2C6H4NO2-3′)2 (3), lie across twofold rotation axes in space group C2/c and they are linked into chains by paired I...O=S interactions: these chains are linked into sheets by a C—H...O hydrogen bond, and the sheets are linked into a three-dimensional framework by aromatic π...π stacking interactions. In N-(4′-iodophenylsulfonyl)-3-nitroaniline, 3-O2NC6H4NHSO2C6H4I-4′ (4), there are R^2_2(8) rings formed by hard N—H...O=S hydrogen bonds and R^2_2(24) rings formed by two-centre I...nitro interactions, which together generate a chain of fused rings: the combination of a C—H...O hydrogen bond and aromatic π...π stacking interactions links the chains into sheets. Molecules of N-(4′-iodophenylsulfonyl)-4-methyl-2-nitroaniline, 4-CH3-2-O2NC6H3NHSO2C6H4I-4′ (5), are linked by N—H...O=S and C—H...O(nitro) hydrogen bonds into a chain containing alternating R^2_2(8) and R^2_2(10) rings, but there are no I...O interactions of either type. There are two molecules in the asymmetric unit of N-(4′-iodophenylsulfonyl)-2-nitroaniline, 2-O2NC6H4NHSO2C6H4I-4′ (6), and the combination of an I...O=S interaction and a hard N—H...O(nitro) hydrogen bond links the two types of molecule to form a cyclic, centrosymmetric four-component aggregate. C—H...O hydrogen bonds link these four-molecule aggregates to form a molecular ladder. Comparisons are made with structures retrieved from the Cambridge Structural Database.


2015 ◽  
Vol 71 (5) ◽  
pp. o270-o271 ◽  
Author(s):  
J. Mohana ◽  
M. Divya Bharathi ◽  
G. Ahila ◽  
G. Chakkaravarthi ◽  
G. Anbalagan

In the anion of the title hydrated molecular salt, C9H8N+·C8H4NO6−·H2O, the protonated carboxyl and nitro groups makes dihedral angles of 27.56 (5) and 6.86 (8)°, respectively, with the attached benzene ring, whereas the deprotonated carboxy group is almost orthogonal to it with a dihedral angle of 80.21 (1)°. In the crystal, the components are linked by O—H...O and N—H...O hydrogen bonds, generating [001] chains. The packing is consolidated by weak C—H...N and C—H...O interactions as well as aromatic π–π stacking [centroid-to-centroid distances: 3.7023 (8) & 3.6590 (9)Å] interactions, resulting in a three-dimensional network.


2009 ◽  
Vol 64 (3) ◽  
pp. 328-330 ◽  
Author(s):  
Akoun Abou ◽  
Severin D. Goulizan Bi ◽  
Leopold Kaboré ◽  
Abdoulaye Djandé ◽  
Adama Saba ◽  
...  

The title compound (C12H10O4) crystallizes in the triclinic space group P1̄ with a = 7.367(3), b = 8.1188(3), c = 9.549(5) Å, α = 74.034(1)°, β = 84.374(2)°, γ = 64.581(3)°, Z = 2, and dcalc = 1.462 g cm−3. It exhibits a strong intramolecular O-H···O hydrogen bond and exists as the exocyclic enolic tautomer as it has been observed in solution. The structure is stabilized by C-H···π, C-O···π and π-π stacking interactions between benzene and pyran rings.


2006 ◽  
Vol 62 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Christopher Glidewell ◽  
John N. Low ◽  
Janet M. S. Skakle ◽  
James L. Wardell

The structures of five of the possible six isomers of (E,E)-1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadiene are reported, including two polymorphs of one of the isomers. (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene, C14H10N4O4 (I), crystallizes in two polymorphic forms (Ia) and (Ib) in which the molecules lie across centres of inversion in space groups P21/n and P21/c, respectively: the molecules in (Ia) and (Ib) are linked into chains by aromatic π...π stacking interactions and C—H...π(arene) hydrogen bonds, respectively. Molecules of (E,E)-1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene (II) are linked into sheets by two independent C—H...O hydrogen bonds. The molecules of (E,E)-1,4-bis(3-nitrophenyl)-2,3-diaza-1,3-butadiene (III) lie across inversion centres in the space group P21/n, and a combination of a C—H...O hydrogen bond and a π...π stacking interaction links the molecules into sheets. A total of four independent C—H...O hydrogen bonds link the molecules of (E,E)-1-(3-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene (IV) into sheets. In (E,E)-1,4-bis(4-nitrophenyl)-2,3-diaza-1,3-butadiene (V) the molecules, which lie across centres of inversion in the space group P21/n, are linked by just two independent C—H...O hydrogen bonds into a three-dimensional framework.


2006 ◽  
Vol 62 (4) ◽  
pp. o1529-o1531 ◽  
Author(s):  
Li-Ping Zhang ◽  
Long-Guan Zhu

In the crystal structure of the title organic proton-transfer complex, 2C12H11N2 +·C7H4O5S2−·3H2O, the cations form one-dimensional chains via intermolecular N—H...N hydrogen bonds and these chains, in turn, form a two-dimensional network through π–π stacking interactions. In addition, the anions and water molecules are connected into a two-dimensional hydrogen-bonded network through intermolecular O—H...O hydrogen bonds. The two motifs result in sheets of cations and anions stacked alternately.


Author(s):  
Haliwana B. V. Sowmya ◽  
Tholappanavara H. Suresha Kumara ◽  
Jerry P. Jasinski ◽  
Sean P. Millikan ◽  
Hemmige S. Yathirajan ◽  
...  

In the molecule of 3-chloro-2-(4-methylphenyl)-2H-pyrazolo[3,4-b]quinoline, C17H12ClN3, (I), the dihedral angle between the planes of the pyrazole ring and the methylated phenyl ring is 54.25 (9)°. The bond distances in the fused tricyclic system provide evidence for 10-π delocalization in the pyrazolopyridine portion of the molecule, with diene character in the fused carbocyclic ring. In the crystal, molecules of (I) are linked by two independent C—H...N hydrogen bonds, forming sheets containing centrosymmetricR22(16) andR64(28) rings, and these sheets are all linked together by π–π stacking interactions with a ring-centroid separation of 3.5891 (9) Å.


2006 ◽  
Vol 62 (7) ◽  
pp. o3079-o3081
Author(s):  
Ghasem Rezanejade Bardajee ◽  
Mitchell A. Winnik ◽  
Alan J. Lough

In the title molecular structure, C18H18N2O6·CHCl3, the dihedral angle between the two fused, essentially planar, six-membered rings is 5.4 (2)°. In the crystal structure, weak intermolecular C—H...O hydrogen bonds and π–π stacking interactions connect molecules into two-dimensional layers.


Sign in / Sign up

Export Citation Format

Share Document