scholarly journals Crystal structure of an unknown solvate of (piperazine-κN){5,10,15,20-tetrakis[4-(benzoyloxy)phenyl]porphyrinato-κ4N}zinc

Author(s):  
Soumaya Nasri ◽  
Khaireddine Ezzayani ◽  
Ilona Turowska-Tyrk ◽  
Thierry Roisnel ◽  
Habib Nasri

The title compound, [Zn(C72H44N4O8)(C4H10N2)] or [Zn(TPBP)(pipz] (where TPBP and pipz are 5,10,15,20-tetrakis[4-(benzoyloxy)phenyl]porphyrinato and piperazine ligands respectively), features a distorted square-pyramidal coordination geometry about the central ZnIIatom. This central atom is chelated by the four N atoms of the porphyrinate anion and further coordinated by a nitrogen atom of the piperazine axial ligand, which adopts a chair confirmation. The average Zn—N(pyrrole) bond length is 2.078 (7) Å and the Zn— N(pipz) bond length is 2.1274 (19) Å. The zinc cation is displaced by 0.4365 (4) Å from the N4C20mean plane of the porphyrinate anion toward the piperazine axial ligand. This porphyrinate macrocycle exhibits majorsaddleand moderaterufflingdeformations. In the crystal, the supramolecular structure is made by parallel pairs of layers along (100), with an interlayer distance of 4.100 Å while the distance between two pairs of layers is 4.047 Å. A region of electron density was treated with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] procedure inPLATONfollowing unsuccessful attempts to model it as being part of disorderedn-hexane solvent and water molecules. The given chemical formula and other crystal data do not take into account these solvent molecules.

IUCrData ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Martha Höhne ◽  
Marc Gongoll ◽  
Anke Spannenberg ◽  
Bernd H. Müller ◽  
Normen Peulecke ◽  
...  

The title complex, [Mo(C24H30N2P2)(CO)4], contains a molybdenum centre bearing a P,P′-cis-chelating Ph2PN( i Pr)P(Ph)NH( i Pr) and four carbonyl ligands in a distorted octahedral coordination geometry. This results in a nearly planar four-membered metallacycle. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds to form layers parallel to the ac plane. For the final refinement, the contributions of disordered solvent molecules were removed from the diffraction data with SQUEEZE in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).


IUCrData ◽  
2016 ◽  
Vol 1 (11) ◽  
Author(s):  
Da-Jun Wu ◽  
Bin Fang

In the complex anion of the title salt, (C16H19N2)[Gd(C8H4F3S)4], the GaIIIcation isO,O′-chelated by four anionic 4,4,4-trifluoro-3-oxo-1-(thiophen-2-yl)but-1-en-1-olate ligands in a distorted square-antiprismatic geometry; the 4-[4-(dimethylamino)styryl]-1-methylpyridin-1-ium cation is nearly planar, with a dihedral angle of 9.6 (5)° between the planes of the pyridine and benzene rings. In the crystal, the cations are linked with the complex anionsviaweak C—H...F and C—H...π interactions. Two of the four independent thiophene rings are disordered over two sites; occupancies were refined to 0.662 (10):0.338 (10). The solvent water molecules are highly disordered in a solvent-accessible void of 54 (3) Å3; the diffuse electron densities were removed from the data set using SQUEEZE [Spek (2015).Acta Cryst. C71, 9–16]. These solvent molecules are not considered in the given chemical formula and other crystal data.


Author(s):  
Olha Buchko ◽  
Viktoriya Dyakonenko ◽  
Elena Martsinko ◽  
Elena Chebanenko

The asymmetric unit of the title compound, [Co(C12H8N2)2(H2O)2]2[Ge(C6H5O7)2](NO3)2, features two complex [(C12H8N2)2(H2O)2Co]2+ cations, two NO3 − anions as well as one centrosymmetric [(C6H5O7)2Ge]2− anion. Two HCit ligands (Cit = citrate, C6H4O7) each coordinate via three different oxygen atoms (hydroxylate, α-carboxylate, β-carboxylate) to the Ge atom, forming a slightly distorted octahedron. The coordination polyhedron of the Co atom is also octahedral, formed by coordination of four nitrogen atoms from two phenanthroline molecules and two water oxygen atoms. In the crystal, the cations and anions are linked by hydrogen bonds and form layers parallel to the bc plane. The structure exhibits disorder of the NO3 − anion [disorder ratio 0.688 (9) to 0.312 (9)]. There are also highly disordered solvent molecules (presumably water and/or ethanol) in the crystal structure; explicit refinement of these molecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods [SQUEEZE procedure in PLATON; Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).


IUCrData ◽  
2018 ◽  
Vol 3 (12) ◽  
Author(s):  
Masatomo Makino ◽  
Kazuhiko Matsubayashi ◽  
Yukiko Kodama-Oda ◽  
Naoto Imawaka ◽  
Nobuhiro Mizuno ◽  
...  

The supramolecular features in the title compound, [2,3,9,10,16,17,23,24-octakis(2,6-dimethylphenoxy)phthalocyaninato]zinc(II) bis[(5,10,15,20-tetraphenylporphyrinato)zinc(II)] chloroform tetrasolvate, [Zn(C96H80N8O8)][Zn(C44H28N4)]2·4CHCl3 or [Zn(Pc)][Zn(TPP)]2·4CHCl3, result from a self-assembly of one molecule of [2,3,9,10,16,17,23,24-octakis(2,6-dimethylphenoxy)phthalocyaninato]zinc(II) (ZnPc) and two molecules of (5,10,15,20-tetraphenylporphyrinato)zinc(II) (ZnTPP). One half ZnPc, one ZnTPP and two chloroform molecules define the asymmetric unit, with the zinc(II) cation of ZnPc situated on an inversion centre. In the supramolecule, the central ZnPc moiety is sandwiched between two ZnTPPs moieties in a co-facial conformation with a π-conjugated system, leading to a nearly H-type aggregate with a distance of 3.4967 (5) Å between adjacent zinc sites. The ZnTPP units are slightly glided away to form a partial ecliptic arrangement. Each phenyl group of the TPP ligand is anchored above the N atom of the isoindole linker of the Pc ligand through weak C—H...N hydrogen bonds and is held into the crevice between the two dimethylphenoxy groups of phthalocyanine via van der Waals interactions. In the crystal, chloroform solvent molecules are situated between the supramolecules. There is another solvent-accessible void of 341 (2) Å3. The contribution of disordered solvent molecules situated in this void was removed from the diffraction data using SQUEEZE in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not consider this unknown solvent molecule(s).


Author(s):  
Kirill B. Polyanskii ◽  
Kseniia A. Alekseeva ◽  
Pavel A. Kumandin ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
...  

The title compound, [RuCl2(C21H26N2)(C11H15N)], is an example of a new generation ofN,N-dialkyl metallocomplex ruthenium catalysts with an N→Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.234, which indicates a geometry intermediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usualtransarrangement of the two chloride ligands, with Ru—Cl bond lengths of 2.3397 (8) and 2.3476 (8) Å, and a Cl—Ru— Cl angle of 157.47 (3)°. The crystal structure features C—H...Cl, C—H...π and π–π stacking interactions. The solvent molecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure inPLATON[Spek (2015).Acta Cryst.C71, 9–18], which indicated a solvent cavity of volume 1096 Å3containing approximately 419 electrons. These solvent molecules are not considered in the given chemical formula and other crystal data.


2018 ◽  
Vol 74 (10) ◽  
pp. 1467-1470 ◽  
Author(s):  
Robert D. Sanner ◽  
Victor G. Young

The crystal structures of bis{3,5-difluoro-2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2 N,C 1}(picolinato-κ2 N,O)iridium(III), [Ir(C20H16F2N)2(C6H4NO2)], 1, and bis[2-(4-tert-butylpyridin-2-yl)-3,5-difluorophenyl-κ2 N,C 1](picolinato-κ2 N,O)iridium(III), [Ir(C15H14F2N)2(C6H4NO2)], 2, are presented herein. These phosphorescent cyclometallated iridium(III) compounds have been structurally investigated in order to better understand the nature of their blue-shifted emssions while maintaining high quantum yields. Compound 1 exhibits substantial twisting of the mesitylene rings out of the plane of the attached pyridine ring, with dihedral angles of 67.0 (1) and 78.7 (1)° between the best mean planes. For both compounds, the contribution of disordered solvent molecule(s) was removed using the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. These solvent molecules are not considered in the given chemical formula and other crystal data.


2014 ◽  
Vol 70 (2) ◽  
pp. m54-m55
Author(s):  
Eduard N. Chygorin ◽  
Yuri O. Smal ◽  
Vladimir N. Kokozay ◽  
Irina V. Omelchenko

The title cluster, [Cu4(C11H12N2O6)4], was obtained from the Cu0–FeCl2·4H2O–H4L–Et3N–DMF reaction system (in air), where H4Lis 2-hydroxymethyl-2{[(2-hydroxy-3-nitrophenyl)methylidene]amino}propane-1,3-diol and DMF is dimethylformamide. The asymmetric unit consists of one Cu2+ion and one dianionic ligand; a -4 symmetry element generates the cluster, which contains a {Cu4O4} cubane-like core. The metal ion has an elongated square-based pyramidal CuNO4coordination geometry with the N atom in a basal site. An intramolecular O—H...O hydrogen bond is observed. The solvent molecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure inPLATON[Spek (2009).Acta Cryst. D65, 148–155], which indicated a solvent cavity of volume 3131 Å3containing approximately 749 electrons. These solvent molecules are not considered in the given chemical formula.


Author(s):  
Kristine Krukle-Berzina ◽  
Sergey Belyakov ◽  
Anatoly Mishnev ◽  
Kirill Shubin

The crystal structure of the polymeric title compound, catena-poly[[[diaqualithium]-μ-γ-cyclodextrin(1−)-[aqualithium]-μ-γ-cyclodextrin(1−)] pentadecahydrate], {[Li2(C48H79O40)2(H2O)3]·15H2O} n , consists of deprotonated γ-cyclodextrin (CD) molecules assembled by lithium ions into metal–organic ribbons that are cross-linked by multiple O—H...O hydrogen bonds into sheets extending parallel to (0\overline11). Within a ribbon, one Li+ ion is coordinated by one deprotonated hydroxyl group of the first γ-CD torus and by one hydroxyl group of the second γ-CD torus as well as by two water molecules. The other Li+ ion is coordinated by one deprotonated hydroxyl and by one hydroxyl group of the second γ-CD torus, by one hydroxyl group of the first γ-CD torus as well as by one water molecule. The coordination spheres of both Li+ cations are distorted tetrahedral. The packing of the structure constitute channels along the a axis. Parts of the hydroxymethyl groups in cyclodextrin molecules as well as water molecules show two-component disorder. Electron density associated with additional disordered solvent molecules inside the cavities was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON. These solvent molecules are not considered in the given chemical formula and other crystal data. Five out of the sixteen hydroxymethyl groups and one water molecule are disordered over two sets of sites.


IUCrData ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Norma Wrobel ◽  
Bernhard Witulski ◽  
Dieter Schollmeyer ◽  
Heiner Detert

The title compound, 2C36H39N3O4·H2O, is a linear π-conjugated ladder oligomer with an alkyl chain on the central nitrogen atom. This diindolocarbazole, prepared via a twofold Cadogan reaction, adopts a sligthly convex shape, anti to the disordered octyl group. The unit cell contains nine molecules of the title compound and half a water molecule per main molecule. The water molecule forms hydrogen bridges, connecting the carbazole-NH and methoxy groups of different molecules. The crystal contains solvent molecules which are located in a channel parallel to the c axis. It was not possible to determine the position and nature of the solvent (a mixure of choroform, n-pentane and DMSO). The SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] option of PLATON was used to model the missing electron density. The given chemical formula and other crystal data do not take into account these solvent molecules.


IUCrData ◽  
2020 ◽  
Vol 5 (9) ◽  
Author(s):  
Diego F. Zometa Paniagua ◽  
Gregory L. Powell ◽  
Cynthia B. Powell ◽  
Eric W. Reinheimer

The title complex, [{Os2(CO)4(C21H21P)2}2(C12H14O4)2], is a centrosymmetric molecular loop consisting of two Os—Os sawhorse units linked by two adamantane dicarboxylato bridges. It was synthesized by the microwave-mediated reaction between Os3(CO)12 and adamantane-1,3-dicarboxylic acid. In contrast to the related complex [{Os2(CO)6}2(μ4-adamantane-1,3-diacetate)2], the metal–metal axes within each molecule are oriented parallel rather than perpendicular to one another. The crystal structure exhibits cavities that contain residual electron density peaks, but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent molecules to the scattering was removed using the SQUEEZE (Spek (2015). Acta Cryst. C71, 9–18) routine in PLATON [Spek (2020). Acta Cryst. E76, 1–11]. These solvent molecules are not considered in the given chemical formula and other crystal data.


Sign in / Sign up

Export Citation Format

Share Document