central atom
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 38)

H-INDEX

28
(FIVE YEARS 4)

Calphad ◽  
2022 ◽  
Vol 76 ◽  
pp. 102366
Author(s):  
Yang He ◽  
Chunlin Chen ◽  
Jean Lehmann

2021 ◽  
Vol 23 (1) ◽  
pp. 320
Author(s):  
Alexander E. Pogonin ◽  
Arseniy A. Otlyotov ◽  
Yury Minenkov ◽  
Alexander S. Semeikin ◽  
Yuriy A. Zhabanov ◽  
...  

The structure of a free nickel (II) octamethylporphyrin (NiOMP) molecule was determined for the first time through a combined gas-phase electron diffraction (GED) and mass spectrometry (MS) experiment, as well as through quantum chemical (QC) calculations. Density functional theory (DFT) calculations do not provide an unambiguous answer about the planarity or non-planar distortion of the NiOMP skeleton. The GED refinement in such cases is non-trivial. Several approaches to the inverse problem solution were used. The obtained results allow us to argue that the ruffling effect is manifested in the NiOMP molecule. The minimal critical distance between the central atom of the metal and nitrogen atoms of the coordination cavity that provokes ruffling distortion in metal porphyrins is about 1.96 Å.


Inorganics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 91
Author(s):  
Philippe Rey ◽  
Andrea Caneschi ◽  
Taisiya S. Sukhikh ◽  
Kira E. Vostrikova

Two diradical complexes of the formula [LnRad2(CF3SO3)3] c (Ln(III) = Dy, Eu, Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl) were obtained in air conditions. These are the first examples of diradical compounds of lanthanides and oxazolidine nitroxide. The complexes were characterized crystallographically and magnetically. Single crystal XRD analysis revealed that their coordination sphere is composed of three monodentate triflates and two tripodal Rad, which coordinate the central atom in a tridentate manner via two N atoms of the pyridine groups and the O atom of a nitroxide group. The LnO5N4 polyhedron represents a spherical capped square antiprism with point symmetry close to C4v. The data of static magnetic measurements are compatible with the presence of two paramagnetic ligands in the coordination sphere of the metal.


2021 ◽  
Author(s):  
Lorenzo Malavasi ◽  
Marta Morana ◽  
Boby Joseph ◽  
Mauro Coduri ◽  
Ausonio Tuissi ◽  
...  

The application of an external pressure on Metal Halide Perovskite (MHPs) has become a fascinating way of tuning their optical properties, achieving also novel features. Here, the pressure response of 2D MHPs including a long alkyl chain made of ten carbon atoms, namely decylammonium (DA), has been investigated as a function of the central atom in DA2PbI4 and DA2GeI4. The two systems share a common trend in the phase stability, displaying a transition from an orthorhombic to a monoclinic phase around 2 GPa, followed by a phase separation in two monoclinic phases characterized by different c-axis. The optical properties show rather different behavior due to the presence of Pb or Ge. DA2PbI4 shows a progressive red shift of the band gap from 2.28 eV at ambient conditions, to 1.64 eV at 11.5 GPa, with a narrow PL emission composed by two components, with the second one appearing in concomitance with the phase separation and significantly shifted to lower energy. On the other hand, DA2GeI4, changes from a non-PL system at ambient pressure, to a clear broadband emitter centered around 730 nm (FWHM ~ 170 nm), with a large stoke shift, and an intensity maximum at about 3.7 GPa. This work sheds light on the structural stability of 2D perovskites characterized by extended alkyl chains, to date limited to four carbon atoms, and shows the pressure-induced emergence of broad emission in a novel lead-free perovskite, DA2GeI4. The evidence of wide emission by a moderate pressure in a germanium-based 2D MHP represents a novel result which may open the design, by chemical pressure, of efficient wide or even white lead-free emitters.


IUCrData ◽  
2021 ◽  
Vol 6 (11) ◽  
Author(s):  
Rafael A. Adrian ◽  
Bradley J. Lagemann ◽  
Hadi D. Arman

The PdII central atom in the title complex, [PdCl(C26H24P2)(C6H6N2O)]NO3·CH3CN or [PdCl(dppe)(INAM)]NO3·CH3CN, where dppe is 1,2-bis(diphenylphosphanyl)ethane and INAM is isonicotinamide, exists in a slightly distorted square-planar environment defined by the two P atoms of the dppe ligand, a chloride ligand and the N atom of the isonicotinamide pyridyl ring. The crystal packing in the structure is held together by hydrogen bonds between the amide of the INAM ligand and the nitrate ions that complete the outer coordination sphere. A molecule of acetonitrile is also found in the asymmetric unit of the title complex.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 79
Author(s):  
Komal Yadav ◽  
Upakarasamy Lourderaj ◽  
U. Deva Priyakumar

The quest for stabilizing planar forms of tetracoordinate carbon started five decades ago and intends to achieve interconversion between [R]- and [S]-stereoisomers without breaking covalent bonds. Several strategies are successful in making the planar tetracoordinate form a minimum on its potential energy surface. However, the first examples of systems where stereomutation is possible were reported only recently. In this study, the possibility of neutral and dications of simple hydrocarbons (cyclopentane, cyclopentene, spiropentane, and spiropentadiene) and their counterparts with the central carbon atom replaced by elements from groups 13, 14, and 15 are explored using ab initio MP2 calculations. The energy difference between the tetrahedral and planar forms decreases from row II to row III or IV substituents. Additionally, aromaticity involving the delocalization of the lone pair on the central atom appears to help in further stabilizing the planar form compared to the tetrahedral form, especially for the row II substituents. We identified 11 systems where the tetrahedral state is a minimum on the potential energy surface, and the planar form is a transition state corresponding to stereomutation. Interestingly, the planar structures of three systems were found to be minimum, and the corresponding tetrahedral states were transition states. The energy profiles corresponding to such transitions involving both planar and tetrahedral states without the breaking of covalent bonds were examined. The systems showcased in this study and research in this direction are expected to realize molecules that experimentally exhibit stereomutation.


2021 ◽  
Vol 17 ◽  
pp. 2102-2122
Author(s):  
Ranadeep Talukdar

Two or more indole molecules tailored to a single non-metal central atom, through any of their C2–7 positions are not only structurally engaging but also constitute a class of important pharmacophores. Although the body of such multi-indolyl non-metallide molecules are largely shared to the anticancer agent bis(indolyl)methane, other heteroatomic analogs also possess similar medicinal properties. This concise review will discuss various catalytic and uncatalytic synthetic strategies adopted for the synthesis of the non-ionic (non-metallic) versions of these important molecules till date.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Milan Melník ◽  
Peter Mikuš

Abstract This review covers over 30 examples of monomeric Pt(II) complexes of the types: Pt(η3–P1O1P2)(Y) (Y = PL, CL, OL), Pt(η3–P1N1P2)(Y) (Y = H, NL, CL, Cl, PL) and Pt(η3–P1P2N1)(Y) (Y = Cl). The heterotridentate donor ligands create 11 types of a couple chelate rings with common central atom O1 (η3–P1O1P2), N1 (η3–P1N1P2) and P2 (η3–P1P2N1). The most frequent is P1C2N1C2P2. Some cooperative effects between chelate rings and Y donor ligands were found and discussed. A degree of distortions of square-planar geometry about Pt(II) were also calculated.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4139
Author(s):  
Barbora Vénosová ◽  
Ingrid Jelemenská ◽  
Jozef Kožíšek ◽  
Peter Rapta ◽  
Michal Zalibera ◽  
...  

Two 15-membered octaazamacrocyclic nickel(II) complexes are investigated by theoretical methods to shed light on their affinity forwards binding and reducing CO2. In the first complex 1[NiIIL]0, the octaazamacrocyclic ligand is grossly unsaturated (π-conjugated), while in the second 1[NiIILH]2+ one, the macrocycle is saturated with hydrogens. One and two-electron reductions are described using Mulliken population analysis, quantum theory of atoms in molecules, localized orbitals, and domain averaged fermi holes, including the characterization of the Ni-CCO2 bond and the oxidation state of the central Ni atom. It was found that in the [NiLH] complex, the central atom is reduced to Ni0 and/or NiI and is thus able to bind CO2 via a single σ bond. In addition, the two-electron reduced 3[NiL]2− species also shows an affinity forwards CO2.


IUCrJ ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 295-304
Author(s):  
Júlia Adamko Kožíšková ◽  
Martin Breza ◽  
Marián Valko ◽  
Peter Herich ◽  
Lukáš Bučinský ◽  
...  

An extensive characterization of [Ti(C22H18N2O6)]·H2O was performed by topological analysis according to Bader's quantum theory of atoms in molecules (QTAIM) from the experimentally (multipole model) and theoretically (DFT) determined electron density. To the best of our knowledge, this study is the first example of an experimental electronic structure of a coordination compound in which a peroxo anion is bonded to a 3d central atom. The titanium coordination polyhedron could be described as a deformed tetrahedral pyramid if the midpoint of the peroxide O—O bond (side-on mode) is considered to be in the quasi-apical position. According to the multipole model (MM) results, the titanium atom has a positive QTAIM charge of 2.05 e− which does not correspond to the formal Ti (IV) oxidation state. On the other hand, the peroxo oxygen atoms O(1) and O(2) have MM QTAIM charges of −0.27 and −0.12, respectively. This asymmetric charge density distribution on the peroxo oxygens is in agreement with the distorted orientation of the O2 moiety with respect to the titanium atom. Despite the fact that the overall MM charge of the O2 moiety is more remote from the formal −2 charge than from neutral O2, the O—O distance remains close to that in the peroxo O2 2− anion. In the case of DFT results, the titanium atom charge is also found to be close to +2, the O2 x− moiety charge is around −1, the optimized O—O distance is shorter by only ca 0.04 Å than the experimental value of 1.5005 (16) Å, and the DFT d-populations on titanium are found to be lower than the experimental MM value. This study is the first experimental electronic structure of a transition metal peroxo complex.


Sign in / Sign up

Export Citation Format

Share Document