scholarly journals Crystal structure of dirubidium hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison

Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of dirubidium hydrogen citrate, 2Rb+·HC6H5O72−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carboxylic acid group forms helical chains of very strong hydrogen bonds (O...O ∼ 2.42 Å) along thebaxis. The hydroxy group participates in a chain of intra- and intermolecular hydrogen bonds along thecaxis. These hydrogen bonds result in corrugated hydrogen-bonded layers in thebcplane. The Rb+cations are six-coordinate, and share edges and corners to form layers in theabplane. The interlayer contacts are composed of the hydrophobic methylene groups.

2015 ◽  
Vol 30 (3) ◽  
pp. 211-217
Author(s):  
James A. Kaduk ◽  
Joel W. Reid ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of solifenacin hydrogen succinate [C23H27N2O2(HC4H4O4)] has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Solifenacin hydrogen succinate crystallizes in space group P21 (#4) with a = 6.477 03(2), b = 7.830 95(2), c = 23.848 72(7) Å, β = 90.2373(3)°, V = 1209.63(1) Å3, and Z = 2. The hydrogen succinate anions form a chain linked by strong hydrogen bonds parallel to the a-axis. Discrete N–H···O hydrogen bonds lie on the sides of this chain, resulting in a layer parallel to the ab-plane rich in hydrogen bonds. Halfway between these layers the molecules meet in a herringbone packing of aromatic rings. The powder pattern has been submitted to ICDD for inclusion in future releases of the Powder Diffraction File™.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of trirubidium citrate, 3Rb+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb+cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intramolecular one between the hydroxy group and the central carboxylate, with graph setS(5). The hydrophobic methylene groups lie in pockets in the framework.


2021 ◽  
Vol 36 (1) ◽  
pp. 56-62
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tezacaftor Form A has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tezacaftor Form A crystallizes in space group C2 (#5) with a = 21.05142(6), b = 6.60851(2), c = 17.76032(5) Å, β = 95.8255(2)°, V = 2458.027(7) Å3, and Z = 4. The crystal structure is dominated by van der Waals interactions. O–H⋯O hydrogen bonds link the molecules in chains along the b-axis, and there are a variety of C–H⋯O hydrogen bonds, both intra- and intermolecular. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2019 ◽  
Vol 35 (1) ◽  
pp. 34-40
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of bisoprolol fumarate Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Bisoprolol fumarate Form I crystallizes in space group P-1 (#2) with a = 8.165 70(5) Å, b = 8.516 39(12) Å, c = 16.751 79(18) Å, α = 89.142(1)°, β = 78.155(1)°, γ = 81.763(1)°, V = 1128.265(10) Å3, and Z = 2. The neutral side chain of the bisoprolol cation is probably disordered. The cation and anion are linked by N–H⋯O and O–H⋯O hydrogen bonds. The cations are also linked by N–H⋯O hydrogen bonds. The result is alternating layers of hydrophilic and hydrophobic layers parallel to the ab-plane. The density of the structure is relatively low at 1.130 g cm−3, but there are no obvious voids in the structure. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1625.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of pentasodium hydrogen dicitrate, Na5H(C6H5O7)2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H...O hydrogen bonds, with O...O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na+ions share edges to form open layers parallel to theabplane. A fifth Na+ion in trigonal–bipyramidal coordination shares faces with NaO6octahedra on both sides of these layers.


2021 ◽  
pp. 1-7
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of eltrombopag olamine Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Eltrombopag olamine crystallizes in the space group P21/n (#14) with a = 17.65884(13), b = 7.55980(2), c = 22.02908(16) Å, β = 105.8749(4)°, V = 2828.665(11) Å3, and Z = 4. The crystal structure is dominated by columns of hydrogen-bonded cations and anions along the short b-axis. van der Waals interactions bind the columns together. Two H atoms of each ammonium group in the ethanolammonium cations participate in strong hydrogen bonds, and the third H forms weaker bifurcated H-bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of varenicline hydrogen tartrate Form B (Chantix®) has been refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Varenicline hydrogen tartrate Form B crystallizes in space group P212121 (#19) with a = 7.07616(2), b = 7.78357(2), c = 29.86149(7) Å, V = 1644.706(6) Å3, and Z = 4. The hydrogen bonds were identified and quantified. Hydrogen bonds link the cations and anions in zig-zag chains along the b-axis. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 384 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of fosfomycin tromethamine has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Fosfomycin tromethamine crystallizes in space group P1 (#1) with a = 6.20421(6), b = 9.00072(7), c = 10.91257(15) Å, α = 93.4645(5), β = 101.9734(3), γ = 99.9183(2)°, V = 584.285(2) Å3, and Z = 2. A network of discrete hydrogen bonds links the cations and anions into layers parallel to the ab-plane. The outer surfaces of the layers are composed of the methyloxirane rings of the anions and the methylene groups of the cations. Furthermore, 93% of the atoms are consistent with an additional (pseudo)center of symmetry. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2015 ◽  
Vol 30 (3) ◽  
pp. 270-277
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of nilotinib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Nilotinib crystallizes in space group P1 (#1) with a = 4.518 14(3), b = 10.638 01(5), c = 13.703 77(8) Å, α = 68.8607(4), β = 82.1486(5), γ = 84.1978(5)°, V = 607.62(1) Å3, and Z = 1. The most prominent feature of the structure is two strong hydrogen bonds. These form chains with a graph set C1,1(13); the chains run along [111]. Several weak C–H···O hydrogen bonds also contribute to the packing. The powder pattern has been submitted to ICDD for inclusion in future releases of the Powder Diffraction File™.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of caesium dihydrogen citrate, Cs+·H2C6H5O7−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The coordination polyhedra of the nine-coordinate Cs+cations share edges to form chains along thea-axis. These chains are linked by corners along thec-axis. The un-ionized carboxylic acid groups form two different types of hydrogen bonds; one forms a helical chain along thec-axis, and the other is discrete. The hydroxy group participates in both intra- and intermolecular hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document