scholarly journals Crystal Structure of Fosfomycin Tromethamine, (C4H12NO3)(C3H6O4P), from Synchrotron Powder Diffraction Data and Density Functional Theory

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 384 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of fosfomycin tromethamine has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Fosfomycin tromethamine crystallizes in space group P1 (#1) with a = 6.20421(6), b = 9.00072(7), c = 10.91257(15) Å, α = 93.4645(5), β = 101.9734(3), γ = 99.9183(2)°, V = 584.285(2) Å3, and Z = 2. A network of discrete hydrogen bonds links the cations and anions into layers parallel to the ab-plane. The outer surfaces of the layers are composed of the methyloxirane rings of the anions and the methylene groups of the cations. Furthermore, 93% of the atoms are consistent with an additional (pseudo)center of symmetry. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.

2016 ◽  
Vol 31 (3) ◽  
pp. 176-184
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of citalopram hydrobromide has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Citalopram hydrobromide crystallizes in space group P21/c (#14) with a = 10.766 45(6), b = 33.070 86(16), c = 10.892 85(5) Å, β = 90.8518(3)°, V = 3878.03(4) Å3, and Z = 8. N–H⋯Br hydrogen bonds are important to the structure, but the crystal energy is dominated by van der Waals attraction. The powder pattern was submitted to International Centre for Diffraction Data for inclusion in the Powder Diffraction File™.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of trirubidium citrate, 3Rb+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb+cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intramolecular one between the hydroxy group and the central carboxylate, with graph setS(5). The hydrophobic methylene groups lie in pockets in the framework.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of dirubidium hydrogen citrate, 2Rb+·HC6H5O72−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carboxylic acid group forms helical chains of very strong hydrogen bonds (O...O ∼ 2.42 Å) along thebaxis. The hydroxy group participates in a chain of intra- and intermolecular hydrogen bonds along thecaxis. These hydrogen bonds result in corrugated hydrogen-bonded layers in thebcplane. The Rb+cations are six-coordinate, and share edges and corners to form layers in theabplane. The interlayer contacts are composed of the hydrophobic methylene groups.


2021 ◽  
pp. 1-8
Author(s):  
Ryan L. Hodge ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of brigatinib Form A has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Brigatinib Form A crystallizes in space group P-1 (#2) with a = 9.59616(20), b = 10.9351(3), c = 14.9913(6) Å, α = 76.1210(13), β = 79.9082(11), γ = 74.0802(6)°, V = 1458.497(15) Å3, and Z = 2. Structure solution was complicated by the lowest cost factor solution having an unreasonable conformation of the dimethylphosphoryl group. The second-best structure yielded a better refinement. The crystal structure is characterized by alternating layers of aliphatic and aromatic portions of the molecules along the b-axis. Strong N–H⋯N hydrogen bonds link the molecules into pairs, with a graph set R2,2(8). There is a strong intramolecular N–H⋯O hydrogen bond to the phosphoryl group, which determines the orientation of this group. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
Vol 36 (1) ◽  
pp. 56-62
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tezacaftor Form A has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tezacaftor Form A crystallizes in space group C2 (#5) with a = 21.05142(6), b = 6.60851(2), c = 17.76032(5) Å, β = 95.8255(2)°, V = 2458.027(7) Å3, and Z = 4. The crystal structure is dominated by van der Waals interactions. O–H⋯O hydrogen bonds link the molecules in chains along the b-axis, and there are a variety of C–H⋯O hydrogen bonds, both intra- and intermolecular. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pazopanib hydrochloride Form 1 has been refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pazopanib hydrochloride crystallizes in space group P-1 (#2) with a = 8.45008(6), b = 8.71310(12), c = 16.05489(35) Å, α = 79.5996(9), β = 86.4784(5), γ = 87.3764(3)°, V = 1159.724(9) Å3, and Z = 2. The crystal structure is essentially identical to that of CSD Refcode CEVYEK. There are four strong N–H⋯Cl hydrogen bonds to the chloride anion. Several additional weaker N–H⋯Cl and C–H⋯Cl hydrogen bonds are also present. A variety of C–H⋯O, C–H⋯N, and N–H⋯S hydrogen bonds also contribute to the lattice energy. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1442-C1442
Author(s):  
Karthikeyan Natarajan ◽  
Sathya Duraisamy ◽  
Sivakumar Kandasamy

X -ray diffraction becomes a routine process these decades for determining crystal structure of the materials. Most of the crystal structures solved nowadays is based on single crystal X-ray diffraction because it solves the crystal and molecular structures from small molecules to macro molecules without much human intervention. However it is difficult to grow single crystals of sufficient size and quality for conventional single-crystal X-ray diffraction studies. In such cases it becomes essential that structural information can be determined from powder diffraction data. With the recent developments in the direct-space approaches for structure solution, ab initio crystal structure analysis of molecular solids can be accomplished from X-ray powder diffraction data. It should be recalled that crystal structure determination from laboratory X-ray powder diffraction data is a far more difficult task than that of its single-crystal counterpart, particularly when the molecule possesses considerable flexibility or there are multiple molecules in the asymmetric unit. Salicylic acid and its derivatives used as an anti-inflammatory drug are known for its numerous medicinal applications. In our study, we synthesized mononuclear copper (II) complex of salicylate derivative. The structural characterization of the prepared compound was carried out using powder X-ray diffraction studies. Crystal structure of the compound has been solved by direct-space approach and refined by a combination of Rietveld method using TOPAS Academic V4.1. Density Functional Theory (DFT) calculations have to be carried in the solid state for the compound using GaussianW9.0 in the frame work of a generalized-gradient approximation (GGA). The geometry optimization was to be performed using B3LYP density functional theory. The atomic coordinates were taken from the final X-ray refinement cycle.


2019 ◽  
Vol 35 (1) ◽  
pp. 34-40
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of bisoprolol fumarate Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Bisoprolol fumarate Form I crystallizes in space group P-1 (#2) with a = 8.165 70(5) Å, b = 8.516 39(12) Å, c = 16.751 79(18) Å, α = 89.142(1)°, β = 78.155(1)°, γ = 81.763(1)°, V = 1128.265(10) Å3, and Z = 2. The neutral side chain of the bisoprolol cation is probably disordered. The cation and anion are linked by N–H⋯O and O–H⋯O hydrogen bonds. The cations are also linked by N–H⋯O hydrogen bonds. The result is alternating layers of hydrophilic and hydrophobic layers parallel to the ab-plane. The density of the structure is relatively low at 1.130 g cm−3, but there are no obvious voids in the structure. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1625.


2015 ◽  
Vol 30 (2) ◽  
pp. 170-174
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Thomas N. Blanton

The crystal structure of rilpivirine has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rilpivirine crystallizes in space group P21/c (#14) with a = 8.39049(3), b = 13.89687(4), c = 16.03960(6) Å, β = 90.9344(3)°, V = 1869.995(11) Å3, and Z = 4. The most prominent features of the structure are N–H···N hydrogen bonds. These form a R2,2(8) pattern which, along with C1,1(12) and longer chains, yield a three-dimensional hydrogen bond network. The powder pattern has been submitted to International Centre for Diffraction Data, ICDD, for inclusion in future releases of the Powder Diffraction File™.


2021 ◽  
pp. 1-7
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of eltrombopag olamine Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Eltrombopag olamine crystallizes in the space group P21/n (#14) with a = 17.65884(13), b = 7.55980(2), c = 22.02908(16) Å, β = 105.8749(4)°, V = 2828.665(11) Å3, and Z = 4. The crystal structure is dominated by columns of hydrogen-bonded cations and anions along the short b-axis. van der Waals interactions bind the columns together. Two H atoms of each ammonium group in the ethanolammonium cations participate in strong hydrogen bonds, and the third H forms weaker bifurcated H-bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


Sign in / Sign up

Export Citation Format

Share Document