scholarly journals Crystal structures of titanium–aluminium and –gallium complexes bearing twoμ2-CH3units

Author(s):  
Tim Oswald ◽  
Mira Diekmann ◽  
Annika Frey ◽  
Marc Schmidtmann ◽  
Rüdiger Beckhaus

The isotypic crystal structures of two titanocene complexes containing anEMe3unit (E =Al, Ga; Me = methyl) with twoμ2-coordinating methyl groups, namely [μ-1(η5)-(adamantan-1-yl-2κC1)cycylopentadienyl]di-μ2-methyl-methyl-2κC-[1(η5)-pentamethylcyclopentadienyl]aluminiumtitanium(III), [AlTi(CH3)3(C10H15)(C15H18)], and [μ-1(η5)-(adamantan-1-yl-2κC1)cycylopentadienyl]di-μ2-methyl-methyl-2κC-[1(η5)-pentamethylcyclopentadienyl]galliumtitanium(III), [GaTi(CH3)3(C10H15)(C15H18)], are reported. Reacting a dinuclear nitrogen-bridged low-valent titanium(III) complex with the Lewis acids AlMe3or GaMe3results in the loss of molecular dinitrogen and the formation of two monomeric titanocene(III) fragments bearing twoμ2-bridging methyl groups. Single crystal X-ray diffraction reveals the formation of a newE—C bond involving the pentafulvene ligand while the bridging and terminal methyl groups remain intact.

2004 ◽  
Vol 59 (11-12) ◽  
pp. 1524-1531 ◽  
Author(s):  
Xin Tian ◽  
Tania Pape ◽  
Norbert W. Mitzel

Tetramethylformamidinium trichlorogermanite, [CH(NMe2)2][GeCl3], tetramethylformamidinium trichlorostannite, [CH(NMe2)2][SnCl3], bis-(tetramethylformamidinium hexaiododigallate, [CH(NMe2)2]2[Ga2I6] and bis-(tetramethylformamidinium hexachlorodiindate, [CH(NMe2)2]2[In2Cl6] have been prepared by the reactions between tetramethylformamidinium chloride, [CH(NMe2)2]Cl, and the corresponding low valent halides GeCl2 (as dioxane adduct), SnCl2, “GaI” and InCl. Their crystal structures have been determined by single crystal X-ray diffraction. [CH(NMe2)2][GeCl3] aggregates in a centrosymmetric dimeric structure, in which two trigonal pyramidal GeCl3 units are connected together by two weak Ge···Cl bonds and each Ge atom is bonded to one cation by a weak Ge···N contact. Two sets of weak hydrogen bonds C-H···Cl are observed with bond lengths of 2.87(2) Å and 2.85(2) Å . In [CH(NMe2)2][SnCl3], the SnCl3 − units adopts a (3+3) coordination with three normal Sn-Cl bonds and three weak Sn···Cl contacts. [CH(NMe2)2]2[Ga2I6] and [CH(NMe2)2]2[In2Cl6] contain metal-metal bonded anions with distorted staggered ethane-like conformations. The metal-metal bond lengths are 2.423(1) Å (Ga-Ga) and 2.719(1) Å (In-In). Their Raman spectra contain intense bands at 118.7 cm−1(Ga-Ga) and 174.7 cm−1(In-In) associated with metal-metal stretching modes.


Author(s):  
P. Vojtíšek ◽  
I. Císařová ◽  
J. Podlaha ◽  
Z. Žák ◽  
S. Böhm ◽  
...  

AbstractCrystal structures of the title compounds were determined by single crystal X-ray diffraction. Absolute configuration of the barium salt of (+)-(


1991 ◽  
Vol 46 (5) ◽  
pp. 566-572 ◽  
Author(s):  
Axel Gudat ◽  
Peter Höhn ◽  
Rüdiger Kniep ◽  
Albrecht Rabenau

The isotypic ternary compounds Ba3[MoN4] and Ba3[WN4] were prepared by reaction of the transition metals with barium (Ba3N2, resp.) under nitrogen. The crystal structures were determined by single crystal X-ray diffraction: Ba3[MoN4] (Ba3[WN4]): Pbca; Z = 8; a = 1083.9(3) pm (1091.8(3) pm), b = 1030.3(3) pm (1037.5(3) pm), c = 1202.9(3) pm (1209.2(4) pm). The structures contain isolated tetrahedral anions [MN4]6- (M = Mo, W) which are arranged in form of slightly distorted hexagonal layers and which are stacked along [010] with the sequence (···AB···). Two of the three Ba atoms are situated between, the third one is placed within the layers of [MN4]-groups. In this way the structures can be derived from the Na3As structure type.


1985 ◽  
Vol 38 (8) ◽  
pp. 1243 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
C Pakawatchai ◽  
PC Healy ◽  
AH White

The crystal structures of the title compounds have been determined by single-crystal X-ray diffraction methods at 295 K. Crystal data for (PPh3)2CuBr2Cu(PPh3) (1) show that the crystals are iso-morphous with the previously studied chloro analogue, being monoclinic, P21/c, a 19.390(8), b 9.912(5), c 26.979(9) Ǻ, β 112,33(3)°; R 0.043 for No 3444. Cu( trigonal )- P;Br respectively are 2.191(3); 2.409(2), 2.364(2) Ǻ. Cu(tetrahedral)- P;Br respectively are 2.241(3), 2.249(3); 2.550(2), 2.571(2) Ǻ. Crystals of 'step' [PPh3CuBr]4 (2) are isomorphous with the solvated bromo and unsolvated iodo analogues, being monoclinic, C2/c, a 25.687(10), b 16.084(7), c 17.815(9) Ǻ, β 110.92(3)°; R 0.072 for No 3055. Cu( trigonal )- P;Br respectively are 2.206(5); 2.371(3), 2.427(2) Ǻ. Cu(tetrahedral)- P;Br are 2.207(4); 2.446(2), 2.676(3), 2.515(3) Ǻ.


Author(s):  
William W. Brennessel ◽  
John E. Ellis

The reaction of the [K(18-crown-6)(thf)2]1+ (thf is tetrahydrofuran) salt of bis(anthracene)ferrate(−1), or [Fe(C14H10)2]−, with 2,6-dimethylphenyl isocyanide (CNXyl) in thf resulted in the formation of two new iron isocyanide complexes, namely, [(1,2,3,4-η)-anthracene]tris(2,6-dimethylphenyl isocyanide)iron, [Fe(C14H10)(C9H9N)3] or [Fe(1,2,3,4-η-C14H10)(CNXyl)3], and {5,6-bis(2,6-dimethylanilino)-3-(2,6-dimethylphenyl)-1,2,7-tris[(2,6-dimethylphenyl)imino]-3-azoniahept-3-ene-1,4,7-triido}tris(2,6-dimethylphenyl isocyanide)iron tetrahydrofuran disolvate, [Fe(C54H56N6)(C9H9N)3]·2C4H8O or [Fe(C54H56N6)(CNXyl)3]·2C4H8O, which were characterized by single-crystal X-ray diffraction. The former is likely an intermediate along the path to the known homoleptic [Fe(CNXyl)5], while the latter contains a tridentate ligand that is formed from the `coupling' of six CNXyl ligands. A third crystal structure from this reaction, (7-methylindol-1-ido-κN)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6 O)potassium, [K(C9H8N)(C12H24O6)] or [K(C9H8N)(18-crown-6)], contains a 7-methylindol-1-ide anion, in which one CNXyl ligand has shed a proton during its reductive cyclization.


1985 ◽  
Vol 38 (9) ◽  
pp. 1417 ◽  
Author(s):  
H Becker ◽  
VA Patrick ◽  
BW Skelton ◽  
AH White

The crystal structures of racemic bis [α-(9-anthryl)] ether and its meso form have been determined by single-crystal X-ray diffraction methods at 295 K, being refined by least squares to residuals of 0.053 and 0.041 for 1868 and 3568 independent 'observed' reflections respectively. Crystals of the racemate are orthorhombic, Pcab, a 23.07(1), b 19.85(2), c 10.241(8) Ǻ, Z 8. Crystals of the meso form are triclinic, Pī , a 19.032(12), b 14.207(11), c 9.451(8) Ǻ, α 79.46(6), β 89.68(6), γ 68.97(5)°, Z 4. In the racemate , the dihedral angle between the methyl groups along the ether bonds is 12°, and the short axes of the anthracene moieties lie at an angle of about 120°. In the meso compound, for the two molecules the dihedral angles between the methyl groups along the ether bonds are 90 and 93°, the angle between the two anthracene moieties is 90°, and the interplanar angles between the partly overlapping aromatic systems are 46 and 43°.


2002 ◽  
Vol 57 (10) ◽  
pp. 1090-1100
Author(s):  
Franziska Emmerling ◽  
Caroline Röhr

AbstractThe title compounds were synthesized at a temperature of 700 °C via oxidation of elemental Bi with the hyperoxides AO2 or via reaction of the elemental alkali metals A with Bi2O3. Their crystal structures have been determined by single crystal x-ray diffraction. They are dominated by two possible surroundings of Bi by O, the ψ-trigonal-bipyramidal three (B) and the ψ-tetrahedral four (T) coordination. Cs6Bi4O9 (triclinic, spacegroup P1̄, a = 813.82(12), b = 991.60(14), c = 1213.83(18) pm, α = 103.658(2), β = 93.694(3), γ = 91.662(3)°, Z = 2) contains centrosymmetric chain segmentes [Bi8O18]12- with six three- (T) and two four-coordinated (B) Bi(III) centers. K9Bi5O13 (monoclinic, spacegroup P21/c, a = 1510.98(14), b = 567.59(5), c = 2685.6(2) pm, β = 111.190(2)°, Z = 4) is a mixed valence compound with isolated [BivO4]3- tetrahedra and chains [BiIII4O9]6- of two T and two B coordinated Bi. In the compounds A2Bi4O7 (A = Rb/Cs: monoclinic, C2/c, a = 2037.0(3) / 2130.6(12), b = 1285.5(2) / 1301.9(7), c = 1566.6(2) / 1605.6(9) pm, β = 94.783(3) / 95.725(9)°, Z = 8) ribbons [Bi4O6O2/2]2- are formed, which are condensed to form a three-dimensional framework.


1980 ◽  
Vol 33 (2) ◽  
pp. 313 ◽  
Author(s):  
PR Jefferies ◽  
BW Skelton ◽  
B Walter ◽  
AH White

Following the suggestion made earlier, on the basis of solution spectroscopy, that a number of eriostyl/nitrobenzoate compounds form charge-transfer self-complexes, a number of these have been investigated structurally by single-crystal X-ray diffraction methods in order to ascertain the presence or otherwise of such interactions in the solid state. The substances thus studied were eriostyl 3,5-dinitrobenzoate (1), eriostyl p-nitrobenzoate (2), tetrahydroeriostyl 3,5-dinitrobenzoate (3), and eriostemyl 3,5-dinitrobenzoate (4);* structure determinations in all cases, although displaying the presence of strong charge-transfer interactions from the two moieties of each molecule, show that the interactions in the solid state are intermolecular in nature.


1987 ◽  
Vol 42 (12) ◽  
pp. 1493-1499 ◽  
Author(s):  
Siegfried Pohl ◽  
Wolfgang Saak ◽  
Detlev Haase

AbstractThe compounds (Pn4P)4Sb8I28 (1) and (Ph4P)Sb3I10 (2) were prepared by the reaction of SbI3 and Ph4PI in acetonitrile (molar ratios 2:1 and 3:1 respectively). The structures of 1 and 2 were determined from single crystal X-ray diffraction data.1 crystallizes in the triclinic space group P1̄ with a - 1321.7(5). b = 1346.7(5), c = 2201.8(8) pm, α = 104.18(2). β = 99.92(2), γ = 100.33(2)°; 2: monoclinic, C2/c, a = 2371.1(2), b = 745.0(1), c = 2495.1(2) pm, β = 100.75(1)°.Whereas 1 exhibits isolated Sb8I284- ions, the anions of 2 are built up of polymeric chains [Sb3I10- ]∞. In both compounds the distorted Sbl6 octahedra are linked by common edges. The Sb-I distances are in the range between 277.4 and 354.8 pm (1) and between 277.4 and 342.4 pm (2). The observed structures do not only depend on stoichiometry, the nature of the counter cations, and the possibility of oligomerisation but also on the wide variety of the Sb-I bond strengths and the different bridges formed by iodine.The lone pair of Sb(III) seems to be predominantly 5 s2.


2007 ◽  
Vol 62 (9) ◽  
pp. 1117-1122 ◽  
Author(s):  
Ji-Xiang Dai ◽  
Fang-Hui Wu ◽  
Alexander Rothenberger ◽  
Qian-Feng Zhang

Treatment of the μ3-oxo-centered mixed-valent trinuclear iron complex [Fe3(μ3-O)(μ-OAc)6- (H2O)3] (1) in methanol solution with one, two, or three equivalents of 1-methyl-imidazole (C4H6N2) afforded the substitution products [Fe3(μ3-O)(μ-OAc)6(H2O)2(C4H6N2)] (2), [Fe3(μ3-O)(μ-OAc)6- (H2O)(C4H6N2)2] (3), and [Fe3(μ3-O)(μ-OAc)6(C4H6N2)3] (4), respectively. Complexes 2 - 4 were characterized by spectroscopic and elemental analyses, and the crystal structures of complexes 3 · 1.5MeOH· 2H2O and 4 have been determined by single-crystal X-ray diffraction. The results indicate that in 2 - 4 the trinuclear core unit [Fe3(μ3-O)(μ-OAc)6] of 1 is preserved.


Sign in / Sign up

Export Citation Format

Share Document