lone pair
Recently Published Documents


TOTAL DOCUMENTS

1701
(FIVE YEARS 321)

H-INDEX

69
(FIVE YEARS 12)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 495
Author(s):  
Justyna Krupa ◽  
Maria Wierzejewska ◽  
Jan Lundell

Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation technique. The results show that HNCO interacts specifically with N2. For the 1:1 stoichiometry, three stable minima were located on the potential energy surface. The most stable of them involves a weak, almost linear hydrogen bond from the NH group of the acid molecule to nitrogen molecule lone pair. Two other structures are bound by van der Waals interactions of N⋯N and C⋯N types. The 1:2 and 2:1 HNCO complexes with nitrogen were computationally tracked as well. Similar types of interactions as in the 1:1 complexes were found in the case of the higher stoichiometry complexes. Analysis of the HNCO/N2/Ar spectra after deposition indicates that the 1:1 hydrogen-bonded complex is prevalent in argon matrices with a small amount of the van der Waals structures also present. Upon annealing, complexes of the 1:2 and 2:1 stoichiometry were detected as well.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 490
Author(s):  
Slađana Đorđević ◽  
Slavko Radenković ◽  
Sason Shaik ◽  
Benoît Braïda

This article analyzes the nature of the chemical bond in coinage metal halides using high-level ab initio Valence Bond (VB) theory. It is shown that these bonds display a large Charge-Shift Bonding character, which is traced back to the large Pauli pressure arising from the interaction between the bond pair with the filled semicore d shell of the metal. The gold-halide bonds turn out to be pure Charge-Shift Bonds (CSBs), while the copper halides are polar-covalent bonds and silver halides borderline cases. Among the different halogens, the largest CSB character is found for fluorine, which experiences the largest Pauli pressure from its σ lone pair. Additionally, all these bonds display a secondary but non-negligible π bonding character, which is also quantified in the VB calculations.


Inorganics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Pradeep R. Varadwaj ◽  
Helder M. Marques ◽  
Arpita Varadwaj ◽  
Koichi Yamashita

An attempt was made, using computational methods, to understand whether the intermolecular interactions in the dimers of molybdenum dichalcogenides MoCh2 (Ch = chalcogen, element of group 16, especially S, Se and Te) and similar mixed-chalcogenide derivatives resemble the room temperature experimentally observed interactions in the interfacial regions of molybdenites and their other mixed-chalcogen derivatives. To this end, MP2(Full)/def2-TVZPPD level electronic structure calculations on nine dimer systems, including (MoCh2)2 and (MoChCh′2)2 (Ch, Ch′ = S, Se and Te), were carried out not only to demonstrate the energetic stability of these systems in the gas phase, but also to reproduce the intermolecular geometrical properties that resemble the interfacial geometries of 2D layered MoCh2 systems reported in the crystalline phase. Among the six DFT functionals (single and double hybrids) benchmarked against MP2(full), it was found that the double hybrid functional B2PLYPD3 has some ability to reproduce the intermolecular geometries and binding energies. The intermolecular geometries and binding energies of all nine dimers are discussed, together with the charge density topological aspects of the chemical bonding interactions that emerge from the application of the quantum theory of atoms in molecules (QTAIM), the isosurface topology of the reduced density gradient noncovalent index, interaction region indicator and independent gradient model (IGM) approaches. While the electrostatic surface potential model fails to explain the origin of the S···S interaction in the (MoS2)2 dimer, we show that the intermolecular bonding interactions in all nine dimers examined are a result of hyperconjugative charge transfer delocalizations between the lone-pair on (Ch/Ch′) and/or the π-orbitals of a Mo–Ch/Ch′ bond of one monomer and the dπ* anti-bonding orbitals of the same Mo–Ch/Ch′ bond in the second monomer during dimer formation, and vice versa. The HOMO–LUMO gaps calculated with the MN12-L functional were 0.9, 1.0, and 1.1 eV for MoTe2, MoSe2 and MoS2, respectively, which match very well with the solid-state theoretical (SCAN-rVV10)/experimental band gaps of 0.75/0.88, 0.90/1.09 and 0.93/1.23 eV of the corresponding systems, respectively. We observed that the gas phase dimers examined are perhaps prototypical for a basic understanding of the interfacial/inter-layer interactions in molybdenum-based dichalcogenides and their derivatives.


2022 ◽  
pp. 2104141
Author(s):  
Jueli Shi ◽  
Ethan A. Rubinstein ◽  
Weiwei Li ◽  
Jiaye Zhang ◽  
Ye Yang ◽  
...  

2022 ◽  
Author(s):  
Hosoowi Lee ◽  
Jun Ho Hwang ◽  
Dajung Lee ◽  
Inhye Kim ◽  
Eunji Lee ◽  
...  

Abstract Reversible supramolecular polymerisation and depolymerisation of biomacromolecules are common and fundamental phenomena in biological systems, which can be controlled by the selective modification of biomacromolecules through molecular recognition. Herein, a porphyrin tripod (DPZnT) connected through a triazole bridge was prepared as a monomeric building block for guest-induced supramolecular polymerisation. Although the lone pair electrons in triazolic nitrogen potentially bind to the zinc porphyrin units through axial ligation, the intrinsic steric hindrance suppressed the coordination of the triazole bridge to the porphyrin unit in DPZnT. Therefore, DPZnT formed spherical nanoparticles through π-π interactions. The addition of 1,3,5-tris(pyridine-4-yl)benzene (Py3B) caused the guest-induced fibrous supramolecular polymerisation of DPZnT by forming a 1:1 host-guest complex, which was further assembled into a fibrous polymer. Furthermore, addition of Cl− to DPZnT induced the transformation of spherical nanoparticles to fibrous supramolecular polymers. The fibrous supramolecular polymers of DPZnT obtained by adding Py3B or Cl− were depolymerised to their original spherical particles after adding Cu(ClO4)2 or AgNO3, respectively.


Nanoscale ◽  
2022 ◽  
Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Juan Guo ◽  
Ronghua Jiang ◽  
Yanping Hou ◽  
...  

Lattice distortion is an important way to improve the electrocatalytic performance and stability of two-dimensional transition metal materials (2d-TMSs). Herein, a lattice distortion nickel-molybdenum sulfide electrocatalyst on foam nickel (NiMoS4-12/NF)...


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Natale Perchiazzi ◽  
Daniela Mauro ◽  
Pietro Vignola ◽  
Federica Zaccarini ◽  
Knut Eldjarn

The new mineral zoisite-(Pb), ideally CaPbAl3(SiO4)(Si2O7)O(OH), was discovered in a sample from the Jakobsberg manganese-iron oxide deposit, Värmland, Sweden. Zoisite-(Pb) is found as pale pink subhedral prisms elongated on [010], up to 0.3 mm in size, associated with calcite, celsian, diopside, grossular, hancockite, hyalophane, native lead, phlogopite, and vesuvianite. Associated feldspars show one of the highest PbO contents (~7–8 wt%) found in nature. Electron-microprobe analysis of zoisite-(Pb) point to the empirical formula (Ca1.09Pb0.86Mn2+0.01Na0.01)∑1.97(Al2.88Fe3+0.10Mn3+0.04)∑3.02Si3.00O12(OH)1.00. The eight strongest diffraction lines [dobs, Iobs, (hkl)] are 8.63 s (101), 8.11 mw (200), 4.895 m (011), 4.210 m (211), 3.660 s (112, 311), 3.097 mw (312), 2.900 s (013), and 2.725 m (511). Zoisite-(Pb) is isostructural with zoisite and its crystal structure was refined up to R1 = 0.0213 for 2013 reflections with Fo > 4σ(Fo). Pb shows a stereochemically active lone pair leading to a lopsided distribution of its coordinating oxygens. A full chemical and Raman characterization of zoisite-(Pb) and of the Pb-bearing epidote hancockite is reported, together with an improved crystal structural model of hancockite, refined up to R1 = 0.0254 for 2041 reflections with Fo > 4σ(Fo). The effects of the incorporation of Pb in the crystal structure of zoisite-(Pb), hancockite, and related synthetic and natural phases are described and discussed.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 27
Author(s):  
Christophe Gourlaouen ◽  
Jean-Philip Piquemal

We study the quantum chemical nature of the Lead(II) valence basins, sometimes called the lead “lone pair”. Using various chemical interpretation tools, such as molecular orbital analysis, natural bond orbitals (NBO), natural population analysis (NPA) and electron localization function (ELF) topological analysis, we study a variety of Lead(II) complexes. A careful analysis of the results shows that the optimal structures of the lead complexes are only governed by the 6s and 6p subshells, whereas no involvement of the 5d orbitals is found. Similarly, we do not find any significant contribution of the 6d. Therefore, the Pb(II) complexation with its ligand can be explained through the interaction of the 6s2 electrons and the accepting 6p orbitals. We detail the potential structural and dynamical consequences of such electronic structure organization of the Pb (II) valence domain.


2021 ◽  
Vol 23 ◽  
Author(s):  
Zhengyu Zhang ◽  
Ying Peng ◽  
Jiang Zheng

: Reactive metabolites (RMs) are products generated from the metabolism of endogenous and exogenous substances. RMs are characterized as electrophilic species chemically reactive to nucleophiles. Those nucleophilic species may be nitrogen-containing bio-molecules, including macro-biomolecules, such as protein and DNA, and small biomolecules, i.e., amino acids (AAs) and biogenic amines (BAs). AAs and BAs are essential endogenous nitrogen-containing compounds required for normal development, metabolism, and physiological functions in organisms, through participating in the intracellular replication, transcription, translation, division and proliferation, DNA and protein synthesis, regulation of apoptosis, and intercellular communication activities. These biological amines containing an active lone pair of electrons on the electronegative nitrogen atom would be the proper N-nucleophiles to be attacked by the abovementioned RMs. This review covers an overview of adductions of AAs and BAs with varieties of RMs. These RMs are formed from metabolic activation of furans, naphthalene, benzene, and products of lipid peroxidation. This article is designed to provide readers with a better understanding of biochemical mechanisms of toxic action.


Author(s):  
Taylor J. Santaloci ◽  
Marie E. Strauss ◽  
Ryan C. Fortenberry

Functionalizing deprotonated polycyclic aromatic hydrocarbon (PAH) anion derivatives gives rise to electronically excited states in the resulting anions. While functionalization with −OH and −C2H, done presently, does not result in the richness of electronically excited states as it does with −CN done previously, the presence of dipole-bound excited states and even some valence excited states are predicted in this quantum chemical analysis. Most notably, the more electron withdrawing −C2H group leads to valence excited states once the number of rings in the molecule reaches three. Dipole-bound excited states arise when the dipole moment of the corresponding neutral radical is large enough (likely around 2.0 D), and this is most pronounced when the hydrogen atom is removed from the functional group itself regardless of whether functionalized by a hydroxyl or enthynyl group. Deprotonatation of the hydroxyl group in the PAH creates a ketone with a delocalized highest occupied molecular orbital (HOMO) unlike deprotonation of a hydrogen on the ring where a localized lone pair on one of the carbon atoms serves as the HOMO. As a result, hydroxyl functionlization and subsequent deprotonation of PAHs creates molecules that begin to exhibit structures akin to nucleic acids. However, the electron withdrawing −C2H has more excited states than the electron donating −OH functionalized PAH. This implies that the −C2H electron withdrawing group can absorb a larger energy range of photons, which signifies an increasing likelihood of being stabilized in the harsh conditions of the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document