scholarly journals Crystal structure and Hirshfeld surface analysis of 1-(2,4-dichlorobenzyl)-5-methyl-N-(thiophene-2-sulfonyl)-1H-pyrazole-3-carboxamide

Author(s):  
Abdullah Aydin ◽  
Mehmet Akkurt ◽  
Zehra Tugce Gur ◽  
Erden Banoğlu

In the title compound, C16H13Cl2N3O3S2, the thiophene ring is disordered in a 0.762 (3):0.238 (3) ratio by an approximate 180° rotation of the ring around the S—C bond linking the ring to the sulfonyl unit. The dichlorobenzene group is also disordered over two sets of sites with the same occupancy ratio. The molecular conformation is stabilized by intramolecular C—H...Cl and C—H...N hydrogen bonds, forming rings with graph-set notation S(5). In the crystal, pairs of molecules are linked by N—H...O and C—H...O hydrogen bonds, forming inversion dimers with graph-set notation R 2 2(8) and R 1 2(11), which are connected by C—H...O hydrogen-bonding interactions into ribbons parallel to (100). The ribbons are further connected into a three-dimensional network by C—H...π interactions and π–π stacking interactions between benzene and thiophene rings, with centroid-to-centroid distances of 3.865 (2), 3.867 (7) and 3.853 (2) Å. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.

Author(s):  
Nasiba Pirnazarova ◽  
Ubaydullo Yakubov ◽  
Sevara Allabergenova ◽  
Akmaljon Tojiboev ◽  
Kambarali Turgunov ◽  
...  

The asymmetric unit of the title compound, C16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H...N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H...H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.


Author(s):  
Vitomir Vusak ◽  
Darko Vusak ◽  
Kresimir Molcanov ◽  
Mestrovic Ernest

The title compound, C8H7NO5, is planar with an r.m.s. deviation for all non-hydrogen atoms of 0.018 Å. An intramolecular O—H...O hydrogen bond involving the adjacent hydroxy and nitro groups forms an S(6) ring motif. In the crystal, molecules are linked by O—H...O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H...O hydrogen bonds, forming layers parallel to the bc plane. The layers are linked by a further C—H...O hydrogen bond, forming slabs, which are linked by C=O...π interactions, forming a three-dimensional supramolecular structure. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid state. The molecule was also characterized spectroscopically and its thermal stability investigated by differential scanning calorimetry and by thermogravimetric analysis.


Author(s):  
Farid N. Naghiyev ◽  
Maria M. Grishina ◽  
Victor N. Khrustalev ◽  
Mehmet Akkurt ◽  
Afet T. Huseynova ◽  
...  

The molecular conformation of the title compound, C17H14ClN3O4, is stabilized by an intramolecular C—H...O contact, forming an S(6) ring motif. In the crystal, the molecules are connected by N—H...O hydrogen-bond pairs along the b-axis direction as dimers with R 2 2(8) and R 2 2(14) ring motifs and as ribbons formed by intermolecular C—H...N hydrogen bonds. There are weak van der Waals interactions between the ribbons. The most important contributions to the surface contacts are from H...H (34.9%), O...H/H...O (19.2%), C...H/H...C (11.9%), Cl...H/H...Cl (10.7%) and N...H/H...N (10.4%) interactions, as concluded from a Hirshfeld surface analysis.


2018 ◽  
Vol 74 (9) ◽  
pp. 1239-1243
Author(s):  
Tanvirbanu J. Malek ◽  
Sahaj A. Gandhi ◽  
Vijay Barot ◽  
Mukesh Patel ◽  
Urmila H. Patel

The title compound, C16H14BrN3O5, is a novel halogen (Br) substituted hydrazine derivative. The hydrazine derivatives were the group of compounds with the general structure, R 1 R 2C=NNH2 (Uppal et al., 2011), with the central RC=NNH2 moiety bridging two different groups on both sides. An all-trans configuration of the backbone (RC=NNH2) results in an extended molecular conformation. The dihedral angle between the 5-bromo-2-methoxyphenyl ring and the nitrophenyl ring is 4.4 (3)°. Intramolecular N—H...O interactions form S(6) graph-set motifs, while C—H...O and C—H...N interactions form S(5) graph-set motifs. Symmetry-related molecules are linked by C—H...O intermolecular interactions forming an R 2 1(10) graph-set motif. There are nearly face-to-face directional specific π–π stacking interactions between the centroids of the nitrophenyl ring and the benzene ring of the 5-bromo-2-methoxy group [centroid–centroid distance = 3.6121 (5) Å and slippage = 1.115 Å], which also contributes to the molecular packing. The Hirshfeld surface analysis was performed in order to visualize, explore and quantify the intermolecular interactions in the crystal lattice of the title compound.


2018 ◽  
Vol 74 (8) ◽  
pp. 1063-1066 ◽  
Author(s):  
S. N. Sheshadri ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
M. K. Veeraiah ◽  
Ching Kheng Quah ◽  
...  

In the molecule of the title compound, C17H14BrFO3, the aromatic rings are tilted with respect to the enone bridge by 13.63 (14) and 4.27 (15)°, and form a dihedral angle 17.91 (17)°. In the crystal, centrosymmetrically related molecules are linked by pairs of C—H...O hydrogen bonds into dimeric units, forming rings of R 2 2(14) graph-set motif. The dimers are further connected by weak C—H...O hydrogen interactions, forming layers parallel to (10\overline{1}). Hirshfeld surface analysis shows that van der Waals interactions constitute the major contribution to the intermolecular interactions, with H...H contacts accounting for 29.7% of the surface.


Author(s):  
Eric Ziki ◽  
Siaka Sosso ◽  
Frédérica Mansilla-Koblavi ◽  
Abdoulaye Djandé ◽  
Rita Kakou-Yao

In the title compound, C16H9ClO4the dihedral angle between the coumarin ring system [maximum deviation = 0.023 (1) Å] and the benzene ring is 73.95 (8)°. In the crystal, π–π interactions link the dimers into a three-dimensional framework. A quantum chemical calculation is in generally good agreement with the observed structure, although the calculated dihedral angle between the ring systems (85.7%) is somewhat larger than the observed value [73.95 (8)°]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Aytan A. Niyazova ◽  
...  

In the title compound, C16H12F5N3O, the dihedral angle between the aromatic rings is 31.84 (8)°. In the crystal, the molecules are linked into dimers possessing crystallographic twofold symmetry by pairwise N—H...O hydrogen bonds and weak C—H...O hydrogen bonds and aromatic π–π stacking interactions link the dimers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from F...H/H...F (41.1%), H...H (21.8%), C...H/H...C (9.7%) C...C (7.1%) and O...H/H...O (7.1%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.


2018 ◽  
Vol 74 (9) ◽  
pp. 1211-1214 ◽  
Author(s):  
Mustafa Kemal Gumus ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Valentina A. Kalibabchuk

The title compound, C19H18N4O2, crystallizes with two independent molecules in the asymmetric unit. The triazole ring is inclined to the benzene rings by 9.63 (13) and 87.37 (12)° in one molecule, and by 4.46 (13) and 86.15 (11)° in the other. In the crystal, classical N—H...N hydrogen bonds, weak C—H...O hydrogen bonds and weak C—H...π interactions link the molecules into a three-dimensional supramolecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H...H (51.4%), H...C/C...H (26.7%), H...O/O...H (8.9%) and H...N/N...H (8%) interactions.


2020 ◽  
Vol 76 (9) ◽  
pp. 1535-1538
Author(s):  
M. Renugadevi ◽  
A. Sinthiya ◽  
Kumaradhas Poomani ◽  
Suganya Suresh

In the crystals of the title compound, C5H7N2 +·CNS−·C5H6N2, the components are linked by three N—H...N and two N—H...S hydrogen bonds, resulting in two interpenetrating three-dimensional networks. Hirshfeld surface analysis shows that the most important contributions to the crystal packing are from H...H (36.6%), C...H/H...C (20.4%), S...H/H...S (19.7%) and N...H/H...N (13.4%) interactions.


Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Tuncer Hökelek ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp...ODhydpand C—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosingS(6) ring motifs. In the crystal, N—HDiazp...ODhydphydrogen bonds link the molecules into infinite chains along [10\overline{1}]. These chains are further linkedviaC—HBnz...ODhydp, C—HDhydp...ODhydpand C—HMth...ODhydp(Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp... π interaction may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.1%), H...C/C...H (25.3%) and H...O/O...H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.


Sign in / Sign up

Export Citation Format

Share Document