scholarly journals Crystal structure and Hirshfeld surface analysis of (Z)-4-chloro-N′-(4-oxothiazolidin-2-ylidene)benzenesulfonohydrazide monohydrate

2018 ◽  
Vol 74 (11) ◽  
pp. 1569-1573
Author(s):  
Nikhila Pai ◽  
Sabine Foro ◽  
B. Thimme Gowda

The asymmetric unit of the title thiazole derivative containing a sulfonylhydrazinic moiety, C9H8ClN3O3S2·H2O, consists of two independent molecules and two water molecules. The central parts of the molecules are twisted as both the molecules are bent at both the S and N atoms. In the crystal, N—H...N, N—H...O, C—H...O and O—H...O hydrogen-bonding interactions connect the molecules, forming layers parallel to the ab plane. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from O...H/H...O (32.9%) and H...H (22.6%) interactions.

2018 ◽  
Vol 74 (10) ◽  
pp. 1517-1520 ◽  
Author(s):  
Pinar Sen ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
S. Zeki Yildiz ◽  
Galyna G. Tsapyuk

The asymmetric unit of the title compound, C8H11N3 2+·2Cl−·H2O, contains three organic cations, six chloride anions and three water molecules of crystallization, which are connected by extensive hydrogen-bonding interactions into a three-dimensional supramolecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (37.4%), Cl...H/H...Cl (35.5%), C...H/H...C (9.5%) and C...C (6.9%) interactions.


Author(s):  
Angel D. Herrera-España ◽  
Jesús Aguilera-González ◽  
Gonzalo J. Mena-Rejón ◽  
Simón Hernández-Ortega ◽  
David Cáceres-Castillo

Two crystallographically independent molecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ...A...B...A...B... chains along the [001] and [010] directions through moderate N—H...O hydrogen bonds and C—H...π interactions, respectively. The overall three-dimensional network is formed by I...I and I...S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...C/C...H (26.2%), H...H (20.9%), H...I/I...H (19.4%) and H...O/O...H (6.8%) interactions.


2020 ◽  
Vol 76 (7) ◽  
pp. 1033-1037
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Sevinc H. Mukhtarova ◽  
Gulnar T. Suleymanova ◽  
...  

The title compound, C16H14Cl3N3, comprises three molecules of similar shape in the asymmetric unit. The crystal cohesion is ensured by intermolecular C—H...N and C—H...Cl hydrogen bonds in addition to C—Cl...π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that Cl...H/H...Cl (33.6%), H...H (27.9%) and C...H/H...C (17.6%) are the most important contributors towards the crystal packing.


2018 ◽  
Vol 74 (11) ◽  
pp. 1669-1673 ◽  
Author(s):  
Karim Chkirate ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Damodaran Krishnan ◽  
Joel T. Mague ◽  
...  

The asymmetric unit of the title compound, C16H20N2O2, consists of two independent molecules differing slightly in the conformations of the seven-membered rings and the butyl substituents, where the benzene rings are oriented at a dihedral angle of 34.56 (3)°. In the crystal, pairwise intermolecular C—H...O and complementary intramolecular C—H...O hydrogen bonds form twisted strips extending parallel to (012). These strips are connected into layers parallel to (111) by additional intermolecular C—H...O hydrogen bonds. The layers are further joined by C—H...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (65.5%), H...C/C...H (16.0%) and H...O/O...H (15.8%) interactions.


Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


Author(s):  
Ignacio Chi-Duran ◽  
Zouaoui Setifi ◽  
Fatima Setifi ◽  
Christian Jelsch ◽  
Bernd Morgenstern ◽  
...  

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H...N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H...π(cation) interactions involving the CH3 group. The intermolecular interactions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.


Author(s):  
Dmitriy F. Mertsalov ◽  
Kseniia A. Alekseeva ◽  
Magrycheva S. Daria ◽  
Maxim E. Cheshigin ◽  
Sevim Türktekin Çelikesir ◽  
...  

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt an envelope conformation. In the crystal, molecule pairs generate centrosymmetric rings with R 2 2(8) motifs linked by C—H...O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H...π and C—Br...π interactions. Interlayer van der Waals and interhalogen interactions stabilize molecular packing. The F atoms of the CF3 groups of both molecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both molecules are from H...H (23.8 and 22.4%), Br...H/H...Br (18.3 and 12.3%), O...H/H...O (14.3 and 9.7%) and F...H/H...F (10.4 and 19.1%) interactions, as concluded from a Hirshfeld surface analysis.


Author(s):  
Seher Meral ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Galyna G. Tsapyuk

In the molecule of the title compound, C16H20N2O6S2, the mid-point of the C—C bond of the central ethane moiety is located on a twofold rotation axis. In the crystal, molecules are linked by N—H...O hydrogen bonds into supramolecular chains propagating along the [101] direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (43.1%), O...H/H...O (40.9%), C...H/H...C (8.8%) and C...C (5.5%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
S. Bindya ◽  
Mehmet Akkurt ◽  
C. S. Chidan Kumar

In the title compound, C15H10BrFO, the molecular structure consists of a 3-bromophenyl ring and a 4-fluorophenyl ring linked via a prop-2-en-1-one spacer. The 3-bromophenyl and 4-fluorophenyl rings make a dihedral angle of 48.90 (15)°. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. In the crystal, molecules are linked by C—H...π interactions between the bromophenyl and fluorophenyl rings of molecules, resulting in a two-dimensional layered structure parallel to the ab plane. The molecular packing is stabilized by weak Br...H and F...H contacts, one of which is on the one side of each layer, and the second is on the other. The intermolecular interactions in the crystal packing were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are Cl...H/H...Cl (20.8%), followed by C...H/H...C (31.1%), H...H (21.7%), Br...H/H...Br (14.2%), F...H/H...F (9.8%), O...H/H...O (9.7%).


Author(s):  
Hassiba Bougueria ◽  
Souheyla Chetioui ◽  
Mohammed Abdellatif Bensegueni ◽  
Jean-Pierre Djukic ◽  
Nesrine Benarous

The title compound, C16H11ClN2O2, was obtained by diazotization of 2-amino-4-chlorophenol followed by a coupling reaction with β-naphthol. There are two molecules (A and B) in the asymmetric unit. The crystal structure features only one type of intermolecular interaction, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N—N— moiety exhibit an s-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in molecule A and 10.35 (2)° in molecule B. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (32.1%), C...H/H...C (23.1%), Cl...H/H...Cl (15.2%), O...H/H...O (12.8%) and C...C (9%) contacts.


Sign in / Sign up

Export Citation Format

Share Document