scholarly journals Crystal structure and Hirshfeld surface analysis of 1-[(E)-2-(5-chloro-2-hydroxyphenyl)hydrazin-1-ylidene]naphthalen-2(1H)-one

Author(s):  
Hassiba Bougueria ◽  
Souheyla Chetioui ◽  
Mohammed Abdellatif Bensegueni ◽  
Jean-Pierre Djukic ◽  
Nesrine Benarous

The title compound, C16H11ClN2O2, was obtained by diazotization of 2-amino-4-chlorophenol followed by a coupling reaction with β-naphthol. There are two molecules (A and B) in the asymmetric unit. The crystal structure features only one type of intermolecular interaction, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N—N— moiety exhibit an s-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in molecule A and 10.35 (2)° in molecule B. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (32.1%), C...H/H...C (23.1%), Cl...H/H...Cl (15.2%), O...H/H...O (12.8%) and C...C (9%) contacts.

2020 ◽  
Vol 76 (7) ◽  
pp. 1033-1037
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Sevinc H. Mukhtarova ◽  
Gulnar T. Suleymanova ◽  
...  

The title compound, C16H14Cl3N3, comprises three molecules of similar shape in the asymmetric unit. The crystal cohesion is ensured by intermolecular C—H...N and C—H...Cl hydrogen bonds in addition to C—Cl...π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that Cl...H/H...Cl (33.6%), H...H (27.9%) and C...H/H...C (17.6%) are the most important contributors towards the crystal packing.


2018 ◽  
Vol 74 (11) ◽  
pp. 1669-1673 ◽  
Author(s):  
Karim Chkirate ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Damodaran Krishnan ◽  
Joel T. Mague ◽  
...  

The asymmetric unit of the title compound, C16H20N2O2, consists of two independent molecules differing slightly in the conformations of the seven-membered rings and the butyl substituents, where the benzene rings are oriented at a dihedral angle of 34.56 (3)°. In the crystal, pairwise intermolecular C—H...O and complementary intramolecular C—H...O hydrogen bonds form twisted strips extending parallel to (012). These strips are connected into layers parallel to (111) by additional intermolecular C—H...O hydrogen bonds. The layers are further joined by C—H...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (65.5%), H...C/C...H (16.0%) and H...O/O...H (15.8%) interactions.


Author(s):  
Nasiba Pirnazarova ◽  
Ubaydullo Yakubov ◽  
Sevara Allabergenova ◽  
Akmaljon Tojiboev ◽  
Kambarali Turgunov ◽  
...  

The asymmetric unit of the title compound, C16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H...N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H...H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Author(s):  
Dmitriy F. Mertsalov ◽  
Kseniia A. Alekseeva ◽  
Magrycheva S. Daria ◽  
Maxim E. Cheshigin ◽  
Sevim Türktekin Çelikesir ◽  
...  

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt an envelope conformation. In the crystal, molecule pairs generate centrosymmetric rings with R 2 2(8) motifs linked by C—H...O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H...π and C—Br...π interactions. Interlayer van der Waals and interhalogen interactions stabilize molecular packing. The F atoms of the CF3 groups of both molecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both molecules are from H...H (23.8 and 22.4%), Br...H/H...Br (18.3 and 12.3%), O...H/H...O (14.3 and 9.7%) and F...H/H...F (10.4 and 19.1%) interactions, as concluded from a Hirshfeld surface analysis.


Author(s):  
Seher Meral ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Galyna G. Tsapyuk

In the molecule of the title compound, C16H20N2O6S2, the mid-point of the C—C bond of the central ethane moiety is located on a twofold rotation axis. In the crystal, molecules are linked by N—H...O hydrogen bonds into supramolecular chains propagating along the [101] direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (43.1%), O...H/H...O (40.9%), C...H/H...C (8.8%) and C...C (5.5%) interactions.


Author(s):  
Nada Kheira Sebbar ◽  
Brahim Hni ◽  
Tuncer Hökelek ◽  
Abdelhakim Jaouhar ◽  
Mohamed Labd Taha ◽  
...  

The title compound, C18H12Cl2N2OS, consists of a dihydrobenzothiazine unit linked by a –CH group to a 2,4-dichlorophenyl substituent, and to a propanenitrile unit is folded along the S...N axis and adopts a flattened-boat conformation. The propanenitrile moiety is nearly perpendicular to the mean plane of the dihydrobenzothiazine unit. In the crystal, C—HBnz...NPrpnit and C—HPrpnit...OThz (Bnz = benzene, Prpnit = propanenitrile and Thz = thiazine) hydrogen bonds link the molecules into inversion dimers, enclosing R 2 2(16) and R 2 2(12) ring motifs, which are linked into stepped ribbons extending along [110]. The ribbons are linked in pairs by complementary C=O...Cl interactions. π–π contacts between the benzene and phenyl rings, [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (23.4%), H...Cl/Cl...H (19.5%), H...C/C...H (13.5%), H...N/N...H (13.3%), C...C (10.4%) and H...O/O...H (5.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that the two independent C—HBnz...NPrpnit and C—HPrpnit...OThz hydrogen bonds in the crystal impart about the same energy (ca 43 kJ mol−1). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Shaaban K. Mohamed ◽  
Awad I. Said ◽  
Joel T. Mague ◽  
Talaat I. El-Emary ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C33H26N4O4, the two fused five-membered rings and their N-bound aromatic substituents form a pincer-like motif. The relative conformations about the three chiral carbon atoms are established. In the crystal, a combination of C—H...O and C—H...N hydrogen bonds and C—H...π(ring) interactions leads to the formation of layers parallel to the bc plane. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H...H (44.3%), C...H/H...C (29.8%) and O...H/H...O (15.0%) contacts.


2018 ◽  
Vol 74 (11) ◽  
pp. 1674-1677
Author(s):  
Ercan Aydemir ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Hasan Genc ◽  
Snizhana V. Gaidai

In the title compound, C13H14N4O·2H2O, the organic molecule is almost planar. In the crystal, the molecules are linked by O—H...O, N—H...O and O—H...N hydrogen bonds, forming a two-dimensional network parallel to (10\overline{1}). Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (55.4%), H...O/O...H (14.8%), H...C/C...H (11.7%) and H...N/N...H (8.3%) interactions.


Author(s):  
K. Osahon Ogbeide ◽  
Rajesh Kumar ◽  
Mujeeb-Ur-Rehman ◽  
Bodunde Owolabi ◽  
Abiodun Falodun ◽  
...  

The title compound, C29H36O5, a cassane-type diterpenoid {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl 3-phenylprop-2-enoate}, was isolated from a medicinally important plant,Caesalpinia pulcherrima(Fabaceae). In the molecule, three cyclohexane rings aretrans-fused and adopt chair, chair and half-chair conformations. In the crystal, molecules are linkedviaO—H...O hydrogen bonds, forming a tape structure along theb-axis direction. The tapes are further linked into a double-tape structure through C—H...π interactions. The Hirshfeld surface analysis indicates that the contributions to the crystal packing are H...H (65.5%), C...H (18.7%), O...H (14.5%) and C...O (0.3%).


Sign in / Sign up

Export Citation Format

Share Document