scholarly journals Crystal structure and Hirshfeld surface analysis of (2E,2′E)-1,1′-[selenobis(4,1-phenylene)]bis[3-(4-chlorophenyl)prop-2-en-1-one]

2019 ◽  
Vol 75 (11) ◽  
pp. 1724-1728
Author(s):  
Hazem Bouraoui ◽  
Youcef Mechehoud ◽  
Souheyla Chetioui ◽  
Rachid Touzani ◽  
Meriem Medjani ◽  
...  

In the title compound, C30H20Cl2O2Se, the C—Se—C angle is 99.0 (2)°, with the dihedral angle between the planes of the attached benzene rings being 79.1 (3)°. The average endocyclic angles (Se—C—C) facing the Se atom are 122.1 (5) and 122.2 (5)°. The Se atom is essentially coplanar with the attached benzene rings, deviating by 0.075 (1) and 0.091 (1) Å. In the two phenylene(4-chlorophenyl)prop-2-en-1-one units, the benzene rings are inclined to each other by 44.6 (3) and 7.8 (3)°. In the crystal, the molecules stack up the a axis, forming layers parallel to the ac plane. There are no significant classical intermolecular interactions present. Hirshfeld surface analysis, two-dimensional fingerprint plots and the molecular electrostatic potential surface were used to analyse the crystal packing. The Hirshfeld surface analysis suggests that the most significant contributions to the crystal packing are by C...H/H...C contacts (17.7%).

Author(s):  
Fouad El Kali ◽  
Sevgi Kansiz ◽  
Said Daoui ◽  
Rafik Saddik ◽  
Necmi Dege ◽  
...  

The asymmetric unit of the title compound, C17H12Cl2N2O, contains one independent molecule. The molecule is not planar, the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 29.96 (2)° and the dichlorophenyl ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 82.38 (11)°. In the crystal, pairs of N—H...O hydrogen bonds link the molecules to form inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—H...O interactions, forming layers parallel to the bc plane. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, and the molecular electrostatic potential surface was also analysed. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are by H...H (31.4%), Cl...H/H...Cl (19.9%) and C...H/H...C (19%) contacts.


Author(s):  
Mustafa Kemal Gumus ◽  
Sevgi Kansiz ◽  
Cigdem Yuksektepe Ataol ◽  
Necmi Dege ◽  
Igor O. Fritsky

In the title compounds, 9-bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine, C13H13BrN4O (I), and 7-methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine, C18H17N5O2 (II), the triazole ring is inclined to the benzene ring by 85.15 (9) and 76.98 (5)° in compounds I and II, respectively. In II, the pyridine ring is almost coplanar with the triazole ring, having a dihedral angle of 4.19 (8)°. In the crystal of I, pairs of N—H...N hydrogen bonds link the molecules to form inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—H...π and C—Br...π interactions forming layers parallel to the bc plane. In the crystal of II, molecules are linked by N—H...N and C—H...O hydrogen bonds forming chains propagating along the b-axis direction. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, and the molecular electrostatic potential surface was also analysed. The Hirshfeld surface analysis of I suggests that the most significant contributions to the crystal packing are H...H (42.4%) and O...H/H...O (17.9%) contacts. For compound II, the H...H (48.5%), C...H/H...C (19.6%) and N...H/H...N (16.9%) interactions are the most important contributions.


2020 ◽  
Vol 76 (7) ◽  
pp. 1122-1125
Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the tile compound, C17H17Cl2N3, the dihedral angle between the benzene rings is 62.73 (9)°. In the crystal, there are no classical hydrogen bonds. Molecules are linked by a pair of C—Cl...π interactions, forming an inversion dimer. A short intermolecular HL...HL contact [Cl...Cl = 3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H...H (45.4%), Cl...H/H...Cl (21.0%) and C...H/H...C (19.0%) contacts.


Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


Author(s):  
Seher Meral ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Galyna G. Tsapyuk

In the molecule of the title compound, C16H20N2O6S2, the mid-point of the C—C bond of the central ethane moiety is located on a twofold rotation axis. In the crystal, molecules are linked by N—H...O hydrogen bonds into supramolecular chains propagating along the [101] direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (43.1%), O...H/H...O (40.9%), C...H/H...C (8.8%) and C...C (5.5%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
S. Bindya ◽  
Mehmet Akkurt ◽  
C. S. Chidan Kumar

In the title compound, C15H10BrFO, the molecular structure consists of a 3-bromophenyl ring and a 4-fluorophenyl ring linked via a prop-2-en-1-one spacer. The 3-bromophenyl and 4-fluorophenyl rings make a dihedral angle of 48.90 (15)°. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. In the crystal, molecules are linked by C—H...π interactions between the bromophenyl and fluorophenyl rings of molecules, resulting in a two-dimensional layered structure parallel to the ab plane. The molecular packing is stabilized by weak Br...H and F...H contacts, one of which is on the one side of each layer, and the second is on the other. The intermolecular interactions in the crystal packing were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are Cl...H/H...Cl (20.8%), followed by C...H/H...C (31.1%), H...H (21.7%), Br...H/H...Br (14.2%), F...H/H...F (9.8%), O...H/H...O (9.7%).


Author(s):  
Mohammed Boulhaoua ◽  
Sevgi Kansiz ◽  
Mohamed El Hafi ◽  
Sanae Lahmidi ◽  
Necmi Dege ◽  
...  

In the title compound, C17H14N4O3, the indazole unit is planar to within 0.0171 (10) Å and makes dihedral angles of 6.50 (6) and 6.79 (4)°, respectively, with the nitro and pendant phenyl groups. The conformation of the oxazole ring is best described as an envelope. In the crystal, oblique stacks along the a-axis direction are formed by π–π stacking interactions between the indazole unit and the pendant phenyl rings of adjacent molecules. The stacks are linked into pairs through C—H...O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (36.3%), O...H/H...O (23.4%), C...H/H...C (13.4%) and N...H/H...N (11.4%) interactions.


2018 ◽  
Vol 74 (10) ◽  
pp. 1513-1516 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Galyna G. Tsapyuk

In the title Schiff base compound, C23H23NO, the two ring systems are twisted by 51.40 (11)° relative to each other. In the crystal, the molecules are connected by weak C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (67.2%), C...H/H...C (26.7%) and C...C (2.5%) interactions.


2018 ◽  
Vol 74 (11) ◽  
pp. 1674-1677
Author(s):  
Ercan Aydemir ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Hasan Genc ◽  
Snizhana V. Gaidai

In the title compound, C13H14N4O·2H2O, the organic molecule is almost planar. In the crystal, the molecules are linked by O—H...O, N—H...O and O—H...N hydrogen bonds, forming a two-dimensional network parallel to (10\overline{1}). Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (55.4%), H...O/O...H (14.8%), H...C/C...H (11.7%) and H...N/N...H (8.3%) interactions.


Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing.


Sign in / Sign up

Export Citation Format

Share Document