scholarly journals Crystal structure and Hirshfeld surface analysis of 5-[(5-nitro-1H-indazol-1-yl)methyl]-3-phenyl-4,5-dihydroisoxazole

Author(s):  
Mohammed Boulhaoua ◽  
Sevgi Kansiz ◽  
Mohamed El Hafi ◽  
Sanae Lahmidi ◽  
Necmi Dege ◽  
...  

In the title compound, C17H14N4O3, the indazole unit is planar to within 0.0171 (10) Å and makes dihedral angles of 6.50 (6) and 6.79 (4)°, respectively, with the nitro and pendant phenyl groups. The conformation of the oxazole ring is best described as an envelope. In the crystal, oblique stacks along the a-axis direction are formed by π–π stacking interactions between the indazole unit and the pendant phenyl rings of adjacent molecules. The stacks are linked into pairs through C—H...O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (36.3%), O...H/H...O (23.4%), C...H/H...C (13.4%) and N...H/H...N (11.4%) interactions.

2019 ◽  
Vol 75 (10) ◽  
pp. 1511-1514
Author(s):  
Suk-Hee Moon ◽  
Jinho Kim ◽  
Ki-Min Park ◽  
Youngjin Kang

In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the molecule, intramolecular C—H...O and C—H...N contacts are observed. In the crystal, adjacent molecules are linked by π–π stacking interactions between pyridine rings and weak C—H...π interactions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (52.9%) and H...C/C...H (17.3%) contacts.


Author(s):  
Abdullah Aydin ◽  
Mehmet Akkurt ◽  
Sumeyye Turanli ◽  
Deniz Lengerli ◽  
Erden Banoglu ◽  
...  

In the title compound, C24H20ClNO2, the mean planes of 4-chlorophenyl, 2-methylphenyl and phenylene rings make dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with the 5-methyl-1,2-oxazole ring. In the crystal, molecules are linked by intermolecular C—H...N, C—H...Cl, C—H...π contacts and π–π stacking interactions between the phenylene groups. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (48.7%), H...C/C...H (22.2%), Cl...H/H...Cl (8.8%), H...O/O...H (8.2%) and H...N/N...H (5.1%) interactions.


Author(s):  
Manzoor Ahmad Malla ◽  
Ravi Bansal ◽  
Ray J. Butcher ◽  
Sushil K. Gupta

The title compound, C70H70N8O4Se2, is a spiro bicyclic diselenide, made up of two [SeC6H4CH=N—N(CO)C6H4(C)C6H3NEt2(O)C6H3NEt2] units related by a twofold crystallographic symmetry element bisecting the diselenide bond. The compound crystallizes in a non-centrosymmetric polar space group (tetragonal, P\overline{4}b2) and the structure was refined as an inversion twin. The two diethyl amine groups and their attached phenyl groups of the xanthene ring are disordered over two orientations, with occupancies of 0.664 (19)/0.336 (19) and 0.665 (11)/0.335 (11), respectively. The dihedral angles between the mean planes of the central isoindoline and the phenyl rings are 26.8 (2) and 2.5 (4)°, respectively. The mean plane of the central xanthene ring forms dihedral angles of 2.0 (5), 8.8 (5), 1.7 (5) and 7.9 (6)° with the peripheral phenyl rings. The isoindoline and xanthene rings subtend a dihedral angle of 89.8 (2)°. The molecular conformation is stabilized by an intramolecular C—H...O hydrogen bond generating an S(6) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds together with C—H...π (ring) interactions, forming a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...H (68.1%), C...H/H...C (21.2%) and O...H/H...O (8.7%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6 – 31 G(d) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was used to determine the energy gap and the molecular electrostatic potential (MEP) of the compound was investigated.


Author(s):  
Cemile Baydere ◽  
Merve Taşçı ◽  
Necmi Dege ◽  
Mustafa Arslan ◽  
Yusuf Atalay ◽  
...  

A novel chalcone, C20H20O, derived from benzylidenetetralone, was synthesized via Claissen–Schmidt condensation between tetralone and 2,4,6-trimethylbenzaldehyde. In the crystal, molecules are linked by C—H...O hydrogen bonds, producing R 2 2(20) and R 2 4(12) ring motifs. In addition, weak C—H...π and π-stacking interactions are observed. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H...H (66.0%), H...C/ C...H (22.3%), H...O/O...H (9.3%), and C...C (2.4%) interactions. Shape-index plots show π–π stacking interactions and the curvedness plots show flat surface patches characteristic of planar stacking.


Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


Author(s):  
Seher Meral ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Galyna G. Tsapyuk

In the molecule of the title compound, C16H20N2O6S2, the mid-point of the C—C bond of the central ethane moiety is located on a twofold rotation axis. In the crystal, molecules are linked by N—H...O hydrogen bonds into supramolecular chains propagating along the [101] direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (43.1%), O...H/H...O (40.9%), C...H/H...C (8.8%) and C...C (5.5%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
S. Bindya ◽  
Mehmet Akkurt ◽  
C. S. Chidan Kumar

In the title compound, C15H10BrFO, the molecular structure consists of a 3-bromophenyl ring and a 4-fluorophenyl ring linked via a prop-2-en-1-one spacer. The 3-bromophenyl and 4-fluorophenyl rings make a dihedral angle of 48.90 (15)°. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. In the crystal, molecules are linked by C—H...π interactions between the bromophenyl and fluorophenyl rings of molecules, resulting in a two-dimensional layered structure parallel to the ab plane. The molecular packing is stabilized by weak Br...H and F...H contacts, one of which is on the one side of each layer, and the second is on the other. The intermolecular interactions in the crystal packing were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are Cl...H/H...Cl (20.8%), followed by C...H/H...C (31.1%), H...H (21.7%), Br...H/H...Br (14.2%), F...H/H...F (9.8%), O...H/H...O (9.7%).


Author(s):  
Farid N. Naghiyev ◽  
Maria M. Grishina ◽  
Victor N. Khrustalev ◽  
Ali N. Khalilov ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C28H21N3O, the 1,2-dihydropyridine ring of the 1,2,7,8-tetrahydroisoquinoline ring system is planar as expected, while the cyclohexa-1,3-diene ring has a twist-boat conformation, with Cremer–Pople parameters Q T = 0.367 (2) A, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the isoquinoline ring system and the three phenyl rings are 81.69 (12), 82.45 (11) and 47.36 (10)°. In the crystal, molecules are linked via N—H...O and C—H...N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H...π bonds with a strong interaction involving the phenyl H atoms. The role of the intermolecular interactions in the crystal packing was clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (46.0%), C...H/H...C (35.1%) and N...H/H...N (10.5%) contacts.


Author(s):  
Yassine El Ghallab ◽  
Sanae Derfoufi ◽  
El Mostafa Ketatni ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-methoxyphenol) with a mixture of nitric acid and sulfuric acid, consists of three independent molecules of similar geometry. Each molecule displays an intramolecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by intermolecular C—H...O hydrogen bonds in addition to π–π stacking interactions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H...H (39.6%), O...H/H...O (37.7%), C...H/H...C (12.5%) and C...C (4%) are the most important contributors towards the crystal packing.


Author(s):  
Dmitriy F. Mertsalov ◽  
Maryana A. Nadirova ◽  
Elena A. Sorokina ◽  
Marina A. Vinokurova ◽  
Sevim Türktekin Çelikesir ◽  
...  

The title compound, C24H24N2O5S, crystallizes with two independent molecules (A and B) in the asymmetric unit. In the central ring systems of both molecules, the tetrahydrofuran rings adopt envelope conformations, the pyrrolidine rings adopt a twisted-envelope conformation and the six-membered ring is in a boat conformation. In molecules A and B, the nine-membered groups attached to the central ring system are essentially planar (r.m.s. deviations of 0.002 and 0.003 Å, respectively). They form dihedral angles of 64.97 (9) and 56.06 (10)°, respectively, with the phenyl rings. In the crystal, strong intermolecular O—H...O hydrogen bonds and weak intermolecular C—H...O contacts link the molecules, forming a three-dimensional network. In addition weak π–π stacking interactions [centroid-to centroid distance = 3.7124 (13) Å] between the pyrrolidine rings of the nine-membered groups of A molecules are observed. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify the intermolecular interactions present in the crystal, indicating that the environments of the two molecules are very similar. The most important contributions for the crystal packing are from H...H (55.8% for molecule A and 53.5% for molecule B), O...H/H...O (24.5% for molecule A and 26.3% for molecule B) and C...H/H...C (12.6% for molecule A and 15.7% for molecule B) interactions.


Sign in / Sign up

Export Citation Format

Share Document