scholarly journals Crystal structure and Hirshfeld surface analysis of trans-2,5-dimethylpiperazine-1,4-diium tetrachloridocobaltate(II)

Author(s):  
Meriem Landolsi ◽  
Sonia Abid

In the title molecular salt, (C6H16N2)[CoCl4], the complete dication is generated by crystallographic inversion symmetry and the piperazine ring adopts a chair conformation with the pendant methyl groups in equatorial orientations. The complete dianion is generated by crystallographic twofold symmetry. In the crystal, the (C6H16N2)2+ and [CoCl4]2− ions are linked by N—H...Cl and C—H...Cl hydrogen bonds, thereby forming a two-dimensional supramolecular network. The Hirshfeld surface analysis and fingerprint plots reveal that the largest contributions to the crystal stability come from H...Cl/Cl...H (68.4%) and H...H (27.4%) contacts.

Author(s):  
Cherifa Ben Mleh ◽  
Thierry Roisnel ◽  
Houda Marouani

The asymmetric unit of the title hydrated molecular salt, C6H16N22+·2ClO4−·2H2O, contains a half dication (completed by inversion symmetry), a perchlorate anion and a water molecule. The extended structure consists of infinite chains of formula [(ClO4)H2O]nn−ions extending along thebaxis linked by Ow—H...O (w = water) hydrogen bonds. These chains are cross-linked by the dicationsviaN—H...Owand weak C—H...O hydrogen bonds, thus forming a three-dimensional supramolecular network. Three-dimensional Hirshfeld surface analysis and two-dimensional fingerprint maps reveal that the structure is dominated by H...O/O...H and H...H contacts.


Author(s):  
Rubina Siddiqui ◽  
Urooj Iqbal ◽  
Zafar Saeed Saify ◽  
Shammim Akhter ◽  
Sammer Yousuf

The title compound, C31H46NO7 +·Cl−, was synthesized by a one-pot Mannich condensation reaction. In the molecule, the piperidinone ring adopts a chair conformation, and the trimethoxy-substituted benzene rings and octyl chain are arranged equatorially. In the crystal, centrosymmetric dimers are linked into layers parallel to (011) by N—H...Cl and C—H...Cl hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are O...H (20.5%) interactions followed by C...H (7.8%), Cl...H (5.5%), C...C (1.2%), C...O (0.5%) and Cl...O (0.4%) interactions.


Author(s):  
David Z. T. Mulrooney ◽  
Helge Müller-Bunz ◽  
Tony D. Keene

The reaction of 1,5-dibromopentane with urotropine results in crystals of the title molecular salt, 5-bromourotropinium bromide [systematic name: 1-(5-bromopentyl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane bromide], C11H22BrN4 +·Br− (1), crystallizing in space group P21/n. The packing in compound 1 is directed mainly by H...H van der Waals interactions and C—H...Br hydrogen bonds, as revealed by Hirshfeld surface analysis. Comparison with literature examples of alkylurotropinium halides shows that the interactions in 1 are consistent with those in other bromides and simple chloride and iodide species.


Author(s):  
Sofia Zazouli ◽  
Mohammed Chigr ◽  
Ahmed Jouaiti ◽  
Nathalie Kyritsakas ◽  
El Mostafa Ketatni

The title compound, C17H12O4, was synthesized from the dye alizarin. The dihedral angle between the mean plane of the anthraquinone ring system (r.m.s. deviation = 0.039 Å) and the dioxepine ring is 16.29 (8)°. In the crystal, the molecules are linked by C—H...O hydrogen bonds, forming sheets lying parallel to the ab plane. The sheets are connected through π–π and C=O...π interactions to generate a three-dimensional supramolecular network. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid-state: the most important contributions are from H...H (43.0%), H...O/O...H (27%), H...C/C...H (13.8%) and C...C (12.4%) contacts.


2019 ◽  
Vol 75 (9) ◽  
pp. 1297-1300 ◽  
Author(s):  
Jonnie N. Asegbeloyin ◽  
Kenechukwu J. Ifeanyieze ◽  
Obinna C. Okpareke ◽  
Ebube E. Oyeka ◽  
Tatiana V. Groutso

In the title dithioglycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thioimidazole moiety and the methoxyphenyl groups on either side of the molecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the dithioglycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H...S hydrogen bonds link adjacent molecules to form chains propagating along the c-axis direction. The chains are linked by C—H...S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H...π interactions, leading to the formation of a three-dimensional supramolecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the molecular interactions in the crystal.


Author(s):  
Adeeba Ahmed ◽  
Aiman Ahmad ◽  
Musheer Ahmad ◽  
Valentina A. Kalibabchuk

The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a dimethylformamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic molecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Caryl—CH2—NH—Caryl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supramolecular network, resulting from hydrogen-bonding interactions between the carboxylic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carboxylic group and additional C—H...π interactions. Hirshfeld surface analysis was performed to quantify the intermolecular interactions.


Author(s):  
Mustapha Tiouabi ◽  
Raphaël Tabacchi ◽  
Helen Stoeckli-Evans

In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains propagating along the c-axis direction.


Author(s):  
Vladimir P. Zaytsev ◽  
Lala V. Chervyakova ◽  
Elena A. Sorokina ◽  
Kirill A. Vasilyev ◽  
Sevim Türktekin Çelikesir ◽  
...  

In the title compound, C20H19NO5, the central six-membered ring has a slightly distorted half-chair conformation, with puckering parameters of Q T = 0.3387 (11) Å, θ = 49.11 (19)° and φ = 167.3 (2)°. The conformation of the fused pyrrolidine ring is that of an envelope. Molecules are connected by intermolecular C—H...O hydrogen bonds, C—H...π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.9536 (11) Å, with a slippage of 2.047 Å], forming a three-dimensional network. The most important contributions to the surface contacts are from H...H (46.3%), O...H/H...O (31.5%) and C...H/H...C (17.3%) interactions, as concluded from a Hirshfeld surface analysis.


2018 ◽  
Vol 74 (9) ◽  
pp. 1211-1214 ◽  
Author(s):  
Mustafa Kemal Gumus ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Valentina A. Kalibabchuk

The title compound, C19H18N4O2, crystallizes with two independent molecules in the asymmetric unit. The triazole ring is inclined to the benzene rings by 9.63 (13) and 87.37 (12)° in one molecule, and by 4.46 (13) and 86.15 (11)° in the other. In the crystal, classical N—H...N hydrogen bonds, weak C—H...O hydrogen bonds and weak C—H...π interactions link the molecules into a three-dimensional supramolecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H...H (51.4%), H...C/C...H (26.7%), H...O/O...H (8.9%) and H...N/N...H (8%) interactions.


Sign in / Sign up

Export Citation Format

Share Document