Modeling and controlling work‐in‐progress in discrete manufacturing systems

Kybernetes ◽  
2011 ◽  
Vol 40 (5/6) ◽  
pp. 842-847
Author(s):  
Guo Cai‐fen ◽  
Jing Ran‐zhe
1990 ◽  
Vol 23 (3) ◽  
pp. 671-676
Author(s):  
M. Aicardi ◽  
A. Di Febbraro ◽  
R. Minciardi

Author(s):  
Pingyu Jiang ◽  
Wei Cao

As a key advanced manufacturing technology in next generation manufacturing systems, radio frequency identification (RFID) technology is considered to be one of the most promising technological innovations with the potential to increase visibility and improve efficiency. Therefore, research about RFID and its applications are increasing by blasting with all kinds of RFID models in various fields, especially in manufacturing. By introducing RFID technology into the job-shop floor, this paper proposes a systematic RFID-driven graphical formalized deduction model (rfid-GFDM) for describing the time-sensitive state and position changes of work-in-progress (WIP) material flows and guiding where to deploy RFID devices and how to use them for collecting real-time on-site data. Four steps including RFID configuration based on the process flow model, state blocks model, automatic event generation, and extended event-driven model are proposed one by one to support the implementation of rfid-GFDM. The nature of RFID technology is revealed, too. A use case about a computer numerical control (CNC) milling system is studied, and it demonstrates the feasibility of the proposed model. Finally, the possibility of popularizing the model to other field is discussed, too. It is expected to establish a normative RFID modeling method that will facilitate the convenience of RFID applications in a broad scope.


2014 ◽  
Vol 28 (2) ◽  
pp. 187-199 ◽  
Author(s):  
Ana Paula Estrada-Vargas ◽  
Jean-Jacques Lesage ◽  
Ernesto López-Mellado

2017 ◽  
Vol 28 (5) ◽  
pp. 655-685 ◽  
Author(s):  
Christen Rose-Anderssen ◽  
James Baldwin ◽  
Keith Ridgway

Purpose The purpose of this paper is to critically evaluate the state of the art of applications of organisational systematics and manufacturing cladistics in terms of strengths and weaknesses and introduce new generic cladistic and hierarchical classifications of discrete manufacturing systems. These classifications are the basis for a practical web-based expert system and diagnostic benchmarking tool. Design/methodology/approach There were two stages for the research methods, with eight re-iterative steps: one for theory building, using secondary and observational data, producing conceptual classifications; the second stage for theory testing and theory development, using quantitative data from 153 companies and 510 manufacturing systems, producing the final factual cladogram. Evolutionary relationships between 53 candidate manufacturing systems, using 13 characters with 84 states, are hypothesised and presented diagrammatically. The manufacturing systems are also organised in a hierarchical classification with 13 genera, 6 families and 3 orders under one class of discrete manufacturing. Findings This work addressed several weaknesses of current manufacturing cladistic classifications which include the lack of an explicit out-group comparison, limited conceptual cladogram development, limited use of characters and that previous classifications are specific to sectors. In order to correct these limitations, the paper first expands on previous work by producing a more generic manufacturing system classification. Second, it describes a novel web-based expert system for the practical application of the discrete manufacturing system. Practical implications The classifications form the basis for a practical web-based expert system and diagnostic benchmarking tool, but also have a novel use in an educational context as it simplifies and relationally organises extant manufacturing system knowledge. Originality/value The research employed a novel re-iterative methodology for both theory building, using observational data, producing the conceptual classification, and through theory testing developing the final factual cladogram that forms the basis for the practical web-based expert system and diagnostic tool.


2009 ◽  
Vol 42 (8) ◽  
pp. 1575-1580
Author(s):  
A. Philippot ◽  
M. Sayed-Mouchaweh ◽  
V. Carré-Ménétrier

Sign in / Sign up

Export Citation Format

Share Document