Aircraft positioning using GPS/GLONASS code observations

2019 ◽  
Vol 92 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kamil Krasuski ◽  
Janusz Cwiklak ◽  
Marek Grzegorzewski

Purpose This paper aims to present the problem of the integration of the global positioning system (GPS)/global navigation satellite system (GLONASS) data for the processing of aircraft position determination. Design/methodology/approach The aircraft coordinates were obtained based on GPS and GLONASS code observations for the single point positioning (SPP) method. The numerical computations were executed in the aircraft positioning software (APS) package. The mathematical scheme of equation observation of the SPP method was solved using least square estimation in stochastic processing. In the research experiment, the raw global navigation satellite system data from the Topcon HiperPro onboard receiver were applied. Findings In the paper, the mean errors of an aircraft position from APS were under 3 m. In addition, the accuracy of aircraft positioning was better than 6 m. The integrity term for horizontal protection level and vertical protection level parameters in the flight test was below 16 m. Research limitations/implications The paper presents only the application of GPS/GLONASS observations in aviation, without satellite data from other navigation systems. Practical implications The presented research method can be used in an aircraft based augmentation system in Polish aviation. Social implications The paper is addressed to persons who work in aviation and air transport. Originality/value The paper presents the SPP method as a satellite technique for the recovery of an aircraft position in an aviation test.

2018 ◽  
Vol 90 (8) ◽  
pp. 1213-1220 ◽  
Author(s):  
Kamil Krasuski

PurposeThe purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point Positioning (SPP) method in kinematic mode.Design/methodology/approachThe aircraft coordinates in ellipsoidal frame were obtained based on Global Positioning System (GPS) code observations for SPP method. The numerical computations were executed in post-processing mode in the Aircraft Positioning Software (APS) package. The mathematical scheme of equation observation of SPP method was solved using least square estimation in stochastic processing. In the experiment, airborne test using Cessna 172 aircraft on September 07, 2011 in the civil aerodrome in Mielec was realized. The aircraft position was recovery using observations data from Topcon HiperPro dual-frequency receiver with interval of 1 second.FindingsIn this paper, the average value of standard deviation of aircraft position is about 0.8 m for Latitude, 0.7 m for Longitude and 1.5 m for ellipsoidal height, respectively. In case of the Mean Radial Spherical Error (MRSE) parameter, the average value equals to 1.8 m. The standard deviation of receiver clock bias was presented in this paper and the average value amounts to 34.4 ns. In this paper, the safety protection levels of Horizontal Protection Level (HPL) and Vertical Protection Level (VPL) were also showed and described.Research limitations/implicationsIn this paper, the analysis of aircraft positioning is focused on application the least square estimation in SPP method. The Kalman filtering operation can be also applied in SPP method for designation the position of the aircraft.Practical implicationsThe SPP method can be applied in civil aviation for designation the position of the aircraft in Non-Precision Approach (NPA) GNSS procedure at the landing phase. The typical accuracy of aircraft position is better than 220 m for lateral navigation in NPA GNSS procedure. The limit of accuracy of aircraft position in vertical plane in NPA GNSS procedure is not available.Social implicationsThis paper is destined for people who works in the area of aviation and air transport.Originality/valueThe work presents that SPP method as a universal technique for recovery of aircraft position in civil aviation, and this method can be also used in positioning of aircraft based on Global Navigation Satellite System (GLONASS) code observations.


2019 ◽  
Vol 72 (5) ◽  
pp. 1331-1344
Author(s):  
Ahao Wang ◽  
Junping Chen ◽  
Yize Zhang ◽  
Jiexian Wang ◽  
Bin Wang

The new Global Positioning System (GPS) Civil Navigation Message (CNAV) has been transmitted by Block IIR-M and Block IIF satellites since April 2014, both on the L2C and L5 signals. Compared to the Legacy Navigation Message (LNAV), the CNAV message provides six additional parameters (two orbit parameters and four Inter-Signal Correction (ISC) parameters) for prospective civil users. Using the precise products of the International Global Navigation Satellite System Service (IGS), we evaluate the precision of satellite orbit, clock and ISCs of the CNAV. Additionally, the contribution of the six new parameters to GPS Single Point Positioning (SPP) is analysed using data from 22 selected Multi-Global Navigation Satellite System Experiment (MGEX) stations from a 30-day period. The results indicate that the CNAV/LNAV Signal-In-Space Range Error (SISRE) and orbit-only SISRE from January 2016 to March 2018 is of 0·5 m and 0·3 m respectively, which is improved in comparison with the results from an earlier period. The ISC precision of L1 Coarse/Acquisition (C/A) is better than 0·1 ns, and those of L2C and L5Q5 are about 0·4 ns. Remarkably, ISC correction has little effect on the single-frequency SPP for GPS users using civil signals (for example, L1C, L2C), whereas dual-frequency SPP with the consideration of ISCs results have an accuracy improvement of 18·6%, which is comparable with positioning accuracy based on an ionosphere-free combination of the L1P (Y) and L2P (Y) signals.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Xingxing Li ◽  
Xuanbin Wang ◽  
Jianchi Liao ◽  
Xin Li ◽  
Shengyu Li ◽  
...  

AbstractBecause of its high-precision, low-cost and easy-operation, Precise Point Positioning (PPP) becomes a potential and attractive positioning technique that can be applied to self-driving cars and drones. However, the reliability and availability of PPP will be significantly degraded in the extremely difficult conditions where Global Navigation Satellite System (GNSS) signals are blocked frequently. Inertial Navigation System (INS) has been integrated with GNSS to ameliorate such situations in the last decades. Recently, the Visual-Inertial Navigation Systems (VINS) with favorable complementary characteristics is demonstrated to realize a more stable and accurate local position estimation than the INS-only. Nevertheless, the system still must rely on the global positions to eliminate the accumulated errors. In this contribution, we present a semi-tight coupling framework of multi-GNSS PPP and Stereo VINS (S-VINS), which achieves the bidirectional location transfer and sharing in two separate navigation systems. In our approach, the local positions, produced by S-VINS are integrated with multi-GNSS PPP through a graph-optimization based method. Furthermore, the accurate forecast positions with S-VINS are fed back to assist PPP in GNSS-challenged environments. The statistical analysis of a GNSS outage simulation test shows that the S-VINS mode can effectively suppress the degradation of positioning accuracy compared with the INS-only mode. We also carried out a vehicle-borne experiment collecting multi-sensor data in a GNSS-challenged environment. For the complex driving environment, the PPP positioning capability is significantly improved with the aiding of S-VINS. The 3D positioning accuracy is improved by 49.0% for Global Positioning System (GPS), 40.3% for GPS + GLOANSS (Global Navigation Satellite System), 45.6% for GPS + BDS (BeiDou navigation satellite System), and 51.2% for GPS + GLONASS + BDS. On this basis, the solution with the semi-tight coupling scheme of multi-GNSS PPP/S-VINS achieves the improvements of 41.8–60.6% in 3D positioning accuracy compared with the multi-GNSS PPP/INS solutions.


2019 ◽  
Vol 17 (1) ◽  
pp. 55-60
Author(s):  
Sushmita Timilisina ◽  
Bibek Nepal

Control Networks for Nepal was originally defined through the use of conventional measurements. Conventional mapping methods have led to a static and inactive networks of control point. This network of control served us very well until the devastating earthquake hit Nepal and disturbed it. Determination of precise ground locations is essential for various tasks such as engineering works, earth observation, location-based technologies, emergency service providers, etc. Global Navigation Satellite System plays a very important role in providing quick and reliable positioning/navigation data. The term ‘global navigation satellite system’ (GNSS) refers to a constellation of satellites providing signals from space transmitting positioning and timing data. These systems use the principle of trilateration to calculate the location of a user, through the information obtained from a number of satellites. Each satellite transmits coded signals at precise intervals. In principle, three satellites must be available to determine a three-dimensional (x,y,z) position , additional fourth signal is necessary for precise location of a single point. This helps in eliminating the time differences between satellite’s atomic clocks and the receiver's clocks. USA in around 1970’s started the use of Global Positioning System(GPS). Geodetic Survey Division under Survey Department commenced the use of GPS technology in 1991 A.D as a method for survey technology. Survey Department initiated the use of GPS for carrying out survey of the previously established high order control points. Transformation Parameters (TP) between the National Co-ordinate System and WGS-84 System was derived using the initial Control points co-ordinate and co-ordinate of the same Control points obtained from GNSS survey. GNSS has been used for establishing, updating and rehabilitation of Control Network, measure shift in location produced by earthquake and for various survey task carried out by Survey Department.


Sensor Review ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 559-575
Author(s):  
Kamil Krasuski ◽  
Janusz Ćwiklak

Purpose The purpose of this paper is to present the problem of implementation of the differential global navigation satellite system (DGNSS) differential technique for aircraft accuracy positioning. The paper particularly focuses on identification and an analysis of the accuracy of aircraft positioning for the DGNSS measuring technique. Design/methodology/approach The investigation uses the DGNSS method of positioning, which is based on using the model of single code differences for global navigation satellite system (GNSS) observations. In the research experiment, the authors used single-frequency code observations in the global positioning system (GPS)/global navigation satellite system (GLONASS) system from the on-board receiver Topcon HiperPro and the reference station REF1 (reference station for the airport military EPDE in Deblin in south-eastern Poland). The geodetic Topcon HiperPro receiver was installed in Cessna 172 plane in the aviation test. The paper presents the new methodology in the DGNSS solution in air navigation. The aircraft position was estimated using a “weighted mean” scheme for differential global positioning system and differential global navigation satellite system solution, respectively. The final resultant position of aircraft was compared with precise real-time kinematic – on the fly solution. Findings In the investigations it was specified that the average accuracy of positioning the aircraft Cessna 172 in the geocentric coordinates XYZ equals approximately: +0.03 ÷ +0.33 m along the x-axis, −0.02 ÷ +0.14 m along the y-axis and approximately +0.02 ÷ −0.15 m along the z-axis. Moreover, the root mean square errors determining the measure of the accuracy of positioning of the Cessna 172 for the DGNSS differential technique in the geocentric coordinates XYZ, are below 1.2 m. Research limitations/implications In research, the data from GNSS onboard receiver and also GNSS reference receiver are needed. In addition, the pseudo-range corrections from the base stations were applied in the observation model of the DGNSS solution. Practical implications The presented research method can be used in a ground based augmentation system (GBAS) augmentation system, whereas the GBAS system is still not applied in Polish aviation. Social implications The paper is destined for people who work in the area of aviation and air transport. Originality/value The study presents the DGNSS differential technique as a precise method for recovery of aircraft position in civil aviation and this method can be also used in the positioning of aircraft based on GPS and GLONASS code observations.


Author(s):  
H. Haddadi Amlashi ◽  
F. Samadzadegan ◽  
F. Dadrass Javan ◽  
M. Savadkouhi

Abstract. GNSS stands for Global Navigation Satellite System and is the standard generic term for satellite navigation systems that provide autonomous geo-spatial positioning with global coverage. The advantage of having access to multiple satellites is accuracy, redundancy, and availability at all the times. Though satellite systems do not often fail, if one fails GNSS receivers can pick up signals from other systems. If the line of sight is obstructed, having access to multiple satellites is also a benefit. GPS (Global Positioning System, USA), GLONASS (Global Navigation Satellite System, Russia), BeiDou (Compass, China), and some regional systems are positioning systems that are usually used. In recent years with the development of the UAVs and GNSS receivers, it is possible to manage an accurate PPK (Post Processing Kinematic) networks with a GNSS receiver mounted on a UAV to achieve the position of images principal points WGS1984 and to reduce the need for GCPs. But the most important challenge in a PPK task is, which a combination of different GNSS constellations would result in the most accurate computed position in checkpoints. For this purpose, this study focused on a PPK equipped UAV to map an open pit (Golgohar mine near Sirjan city). For the purpose, different combination of GPS, GLONASS and BeiDou used for position computed. Results are plotted and compared and found out having access to multiple constellations while doing a PPK task would bring higher accuracies in building photogrammetric models although it may cause some random error due to the higher values of noise while the number of the satellites increases.


2012 ◽  
Vol 186 ◽  
pp. 310-315
Author(s):  
Naqvi Najam Abbas ◽  
Wang Xin ◽  
Cong Yi An ◽  
Yan Jun Li

This research endeavor probes into the implementation of navigation solution using the signals of Global Navigation Satellite System (GNSS) from the Garmin GPS-25 OEM board after getting the raw data in the NMEA format. The position information obtained by the receiver is compared with the navigation algorithm implemented in MATLAB. The Ionospheric, Tropospheric and relativistic clock errors are incorporated to achieve the required accuracy. The Least square iterative algorithm is applied to get the position information. The geometric, position and time dilution of precisions; GDOP, PDOP and TDOP respectively are also compared and analyzed. The GNSS structure, the signal in space, the sources of positioning errors, the pre-processing techniques and data formats are also presented to complete the problem. The analytical treatment validates the problem solution too.


2019 ◽  
Vol 15 (3) ◽  
pp. 155014771983442
Author(s):  
Hongwei Zhao ◽  
Yue Yan ◽  
Xiaozhu Shi

Global navigation satellite system signals are easily distorted by the interferences or disturbances, and global navigation satellite system receivers cannot offer continuous effective navigation results in challenging environments. As a representative regional augmentation technology, pseudolite has the potential to provide accurate positioning service to satisfy specific performance requirements in various applications. In this article, we developed a dynamic localization network based on pseudolite technology for regional augmentation navigation purpose. First, the collaborative positioning algorithm is given, and the architecture of localization system is proposed. Then the error sources of localization system are analyzed for performance evaluation. Finally, the proposed system is verified by experiments conducted in both static and kinenatic scenarios. The experiment results demonstrate that the positioning accuracy of the proposed localization system is nearly 10 m, which is close to the global navigation satellite system single-point positioning accuracy. Therefore, it can be used for emergency dynamic positioning of critical areas under the global navigation satellite system denial environments.


Sign in / Sign up

Export Citation Format

Share Document