Aircraft positioning using SPP method in GPS system

2018 ◽  
Vol 90 (8) ◽  
pp. 1213-1220 ◽  
Author(s):  
Kamil Krasuski

PurposeThe purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point Positioning (SPP) method in kinematic mode.Design/methodology/approachThe aircraft coordinates in ellipsoidal frame were obtained based on Global Positioning System (GPS) code observations for SPP method. The numerical computations were executed in post-processing mode in the Aircraft Positioning Software (APS) package. The mathematical scheme of equation observation of SPP method was solved using least square estimation in stochastic processing. In the experiment, airborne test using Cessna 172 aircraft on September 07, 2011 in the civil aerodrome in Mielec was realized. The aircraft position was recovery using observations data from Topcon HiperPro dual-frequency receiver with interval of 1 second.FindingsIn this paper, the average value of standard deviation of aircraft position is about 0.8 m for Latitude, 0.7 m for Longitude and 1.5 m for ellipsoidal height, respectively. In case of the Mean Radial Spherical Error (MRSE) parameter, the average value equals to 1.8 m. The standard deviation of receiver clock bias was presented in this paper and the average value amounts to 34.4 ns. In this paper, the safety protection levels of Horizontal Protection Level (HPL) and Vertical Protection Level (VPL) were also showed and described.Research limitations/implicationsIn this paper, the analysis of aircraft positioning is focused on application the least square estimation in SPP method. The Kalman filtering operation can be also applied in SPP method for designation the position of the aircraft.Practical implicationsThe SPP method can be applied in civil aviation for designation the position of the aircraft in Non-Precision Approach (NPA) GNSS procedure at the landing phase. The typical accuracy of aircraft position is better than 220 m for lateral navigation in NPA GNSS procedure. The limit of accuracy of aircraft position in vertical plane in NPA GNSS procedure is not available.Social implicationsThis paper is destined for people who works in the area of aviation and air transport.Originality/valueThe work presents that SPP method as a universal technique for recovery of aircraft position in civil aviation, and this method can be also used in positioning of aircraft based on Global Navigation Satellite System (GLONASS) code observations.

2019 ◽  
Vol 92 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kamil Krasuski ◽  
Janusz Cwiklak ◽  
Marek Grzegorzewski

Purpose This paper aims to present the problem of the integration of the global positioning system (GPS)/global navigation satellite system (GLONASS) data for the processing of aircraft position determination. Design/methodology/approach The aircraft coordinates were obtained based on GPS and GLONASS code observations for the single point positioning (SPP) method. The numerical computations were executed in the aircraft positioning software (APS) package. The mathematical scheme of equation observation of the SPP method was solved using least square estimation in stochastic processing. In the research experiment, the raw global navigation satellite system data from the Topcon HiperPro onboard receiver were applied. Findings In the paper, the mean errors of an aircraft position from APS were under 3 m. In addition, the accuracy of aircraft positioning was better than 6 m. The integrity term for horizontal protection level and vertical protection level parameters in the flight test was below 16 m. Research limitations/implications The paper presents only the application of GPS/GLONASS observations in aviation, without satellite data from other navigation systems. Practical implications The presented research method can be used in an aircraft based augmentation system in Polish aviation. Social implications The paper is addressed to persons who work in aviation and air transport. Originality/value The paper presents the SPP method as a satellite technique for the recovery of an aircraft position in an aviation test.


2018 ◽  
Vol 90 (9) ◽  
pp. 1413-1420 ◽  
Author(s):  
Kamil Krasuski ◽  
Janusz C´wiklak ◽  
Henryk Jafernik

Purpose The purpose of the study is focused on implementation of Global Navigation Satellite System (GLONASS) technique in civil aviation for recovery of aircraft position using Precise Point Positioning (PPP) method in kinematic mode. Design/methodology/approach The aircraft coordinates of Cessna 172 plane in XYZ geocentric frame were obtained based on GLONASS code and phase observations for PPP method. The numerical computations were executed in post-processing mode in the RTKPOST module in RTKLIB program. The mathematical scheme of equation observation of PPP method was solved using Kalman filter in stochastic processing. Findings In paper, the average accuracy of aircraft position is about 0.308 m for X coordinate, 0.274 m for Y coordinate, 0.379 m for Z coordinate. In case of the mean radial spherical error (MRSE) parameter, the average value equals to 0.562 m. In paper, the accuracy of aircraft position in BLh geodesic frame were also showed and described. Research limitations/implications The PPP method can be applied for determination the coordinates of receiver, receiver clock bias, Zenith Wet Delay (ZWD) parameter and ambiguity term for each satellite. Practical implications The PPP method is a new technique for aircraft positioning in air navigation. The PPP method can be also used in receiver autonomous integrity monitoring (RAIM) module in aircraft-based augmentation system (ABAS) system in air transport. The typical accuracy for recovery the aircraft position is about cm ÷ dm level using the PPP method. Social implications The paper is destined for people who work in area of geodesy, navigation, aviation and air transport. Originality/value The work presents the original research results of implementation the GLONASS satellite technique for recovery the aircraft position in civil aviation. Currently, the presented research PPP method is used in precise positioning of aircraft in air navigation based on global positioning system and GLONASS solutions.


2015 ◽  
Vol 8 (9) ◽  
pp. 9009-9044 ◽  
Author(s):  
M. Liao ◽  
P. Zhang ◽  
G. L. Yang ◽  
Y. M. Bi ◽  
Y. Liu ◽  
...  

Abstract. As a new member of space-based radio occultation sounder, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on FY-3C has been carrying out the atmospheric sounding since 23 September 2013. GNOS takes a daily measurement up to 800 times with GPS (Global Position System) and Chinese BDS (BeiDou navigation satellite) signals. The refractivity profiles from GNOS are compared with the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) analyses in this paper. Bias and standard deviation have being calculated as the function of altitude. The mean bias is about 0.2 % from the near surface to 35 km. The average standard deviation is within 2 % while it is down to about 1 % in the range 5–30 km where best soundings are usually made. To evaluate the performance of GNOS, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and GRAS/METOP-A (GNSS Receiver for Atmospheric Sounding) data are also compared to ECMWF analyses as the reference. The results show that GNOS/FY-3C meets the requirements of the design well. It possesses a sounding capability similar to COSMIC and GRAS in the vertical range of 0–30 km, though it needs improvement in higher altitude. Generally, it provides a new data source for global NWP (numerical weather prediction) community.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7896
Author(s):  
Sławomir Figiel ◽  
Cezary Specht ◽  
Marek Moszyński ◽  
Andrzej Stateczny ◽  
Mariusz Specht

The precision of a linear object measurement using satellite techniques is determined by the number and the relative position of the visible satellites by the receiver. The status of the visible constellation is described by the Dilution Of Precision (DOP). The obtained geometric coefficient values are dependent on many variables. When determining these values, field obstacles at the receiver location and satellite positions changing with time must be taken into account. Carrying out a series of surveys as part of a linear object Global Navigation Satellite System (GNSS) measurement campaign requires the optimisation problem to be solved. The manner of the inspection vehicle’s movement should be determined in such a way that the surveys are taken only within the pre-defined time frames and that the geometric coefficient values obtained at subsequent points of the route are as low as possible. The purpose of this article is to develop a software for the planning of a linear object GNSS measurement campaign to implemented in motion and taking into account the terrain model and its coverage. Additionally, it was determined how much the developed program improves DOP values on the planned route under simulated conditions. This software has no equivalent elsewhere in the world, as the current solutions for the planning of a GNSS measurement campaign, e.g., Trimble GNSS Planning, GNSS Mission Planning, or GPS Navigation Toolbox, allow the satellite constellation geometry to be analysed exclusively for specific coordinates and at a specific time. Analysis of the obtained simulation test results indicates that the campaign implementation in accordance with the pre-determined schedule significantly improves the quality of the recorded GNSS data. This is particularly noticeable when determining the position using the Global Positioning System (GPS) and GLObal NAvigation Satellite System (GLONASS) satellite constellations at the same time. During the tests conducted on the road along a three-kilometre-long route (tram loop) in Gdańsk Brzeźno, the average value of the obtained Position Dilution Of Precision (PDOP) decreased by 22.17% thanks to using the software to plan a linear object GNSS measurement campaign. The largest drop in the geometric coefficient values was noted for an area characterised by a very large number of field obstacles (trees with crowns and high buildings). Under these conditions, the PDOP value decreased by approx. 25%. In areas characterised by a small number of field obstacles (single trees in the vicinity of the track, clusters of trees and buildings located along the track), the changes in the PDOP were slightly smaller and amounted to several percent.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4847
Author(s):  
Weichuan Pan ◽  
Xingqun Zhan ◽  
Xin Zhang ◽  
Shizhuang Wang

The advanced receiver autonomous integrity monitoring (advanced RAIM, ARAIM) is the next generation of RAIM which is widely used in civil aviation. However, the current ARAIM needs to evaluate hundreds of subsets, which results in huge computational loads. In this paper, a method using the subset excluding entire constellation to evaluate the single satellite fault subsets and the simultaneous multiple satellites fault subsets is presented. The proposed ARAIM algorithm is based on the tight integration of the global navigation satellite system (GNSS) and inertial navigation system (INS). The number of subsets that the proposed GNSS/INS ARAIM needs to consider is about 2% of that of the current ARAIM, which reduces the computational load dramatically. The detailed fault detection (FD) process and fault exclusion (FE) process of the proposed GNSS/INS ARAIM are provided. Meanwhile, the method to obtain the FD-only integrity bound and the after-exclusion integrity bound is also presented in this paper. The simulation results show that the proposed GNSS/INS ARAIM is able to find the failing satellite accurately and its integrity performance is able to meet the integrity requirements of CAT-I precision approach.


2021 ◽  
Vol 13 (10) ◽  
pp. 1967
Author(s):  
Meng Wang ◽  
Tao Shan ◽  
Wanwei Zhang ◽  
Hao Huan

The utilization of Global Navigation Satellite System (GNSS) is becoming an attractive navigation approach for geostationary orbit (GEO) satellites. A high-sensitivity receiver compatible with Global Position System (GPS) developed by the United States and BeiDou Navigation Satellite System (BDS) developed by China has been used in a GEO satellite named TJS-5 to demonstrate feasibility of real-time navigation. According to inflight data, the GNSS signal characteristics including availability, position dilution of precision (PDOP), carrier-to-noise ratio (C/N0), observations quantity and accuracy are analyzed. The mean number of GPS and GPS + BDS satellites tracked are 7.4 and 11.7 and the mean PDOP of GPS and GPS + BDS are 10.24 and 3.91, respectively. The use of BDS significantly increases the number of available navigation satellites and improves the PDOP. The number of observations with respect to C/N0 is illustrated in detail. The standard deviation of the pseudorange noises are less than 4 m, and the corresponding carrier phase noises are mostly less than 8 mm. We present the navigation performance using only GPS observations and GPS + BDS observations combination at different weights through comparisons with the precision reference orbits. When GPS combined with BDS observations, the root mean square (RMS) of the single-epoch least square position accuracy can improve from 32.1 m to 16.5 m and the corresponding velocity accuracy can improve from 0.238 m/s to 0.165 m/s. The RMS of real-time orbit determination position accuracy is 5.55 m and the corresponding velocity accuracy is 0.697 mm/s when using GPS and BDS combinations. Especially, the position accuracy in x-axis direction reduced from 7.24 m to 4.09 m when combined GPS with BDS observations.


Sensor Review ◽  
2016 ◽  
Vol 36 (3) ◽  
pp. 249-256 ◽  
Author(s):  
Xin Li ◽  
Jiming Guo ◽  
Lv Zhou

Purpose Global positioning system (GPS) kinematic positioning suffers from performance degradation in constrained environments such as urban canyons, which then restricts the application of high-precision vehicle positioning and navigation within the city. In December 2012, the BeiDou Navigation Satellite System (BDS) regional service was announced, and the combined BDS/GPS kinematic positioning has been enabled in the Asia-Pacific area. Previous studies have mainly focused on the performance evaluations of combined BDS/GPS static positioning. Not much work has been performed for kinematic vehicle positioning under constrained observation conditions. This study aims to analyze the performance of BDS/GPS kinematic vehicle positioning in various conditions. Design/methodology/approach In this study, three vehicle experiments under three observation conditions, an open suburban area, a less dense non-central urban area and a dense central urban area, are investigated using both the code-based differential global navigation satellite system (DGNSS) and phase-based real-time kinematic (RTK) modes. The comparison between combined BDS/GPS and GPS-only vehicle positioning solutions is conducted in terms of positioning availability and positioning precision. Findings Numerical results show that the combined BDS/GPS system significantly outperforms the GPS-only system under poor observation conditions, whereas the improvement was less significant under good observation conditions. Originality/value Thus, this paper studies the performance of combined BDS/GPS kinematic relative positioning under various observation conditions.


2021 ◽  
Vol 5 (1) ◽  
pp. 44-50
Author(s):  
N. V. Leonidov

The purpose of this article is to analyze the existing algorithms of autonomous control of the integrity of the navigation field of the GLONASS system. The analysis is based on domestic materials and official foreign applications. At the beginning of the article, the concept of the integrity of the global navigation satellite system is given in the form in which it is used in International Civil Aviation Organization and among the developers of such systems. The differences between the common types of control of the integrity of the navigation field are shown. The modeling of individual operational characteristics, including the average geometric factor, visibility, and accessibility for different angles of the site, is carried out. The main solutions to the problem of reduced tactical and technical characteristics of the system are compared. The existing prerequisites for the improvement of the GLONASS system and for the use of small navigation spacecraft to eliminate the gap between GLONASS and competing global navigation satellite systems are listed. As a result, a variant of improving the circumstances for the application of these algorithms in unfavorable conditions in relation to the GLONASS system is proposed. It is shown that the low-orbit addition to the GLONASS system can significantly improve the tactical and technical characteristics of the complex as a whole and provide higher reliability of the system as a whole due to the operational maintenance of the integrity of the navigation field.


Sensor Review ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 559-575
Author(s):  
Kamil Krasuski ◽  
Janusz Ćwiklak

Purpose The purpose of this paper is to present the problem of implementation of the differential global navigation satellite system (DGNSS) differential technique for aircraft accuracy positioning. The paper particularly focuses on identification and an analysis of the accuracy of aircraft positioning for the DGNSS measuring technique. Design/methodology/approach The investigation uses the DGNSS method of positioning, which is based on using the model of single code differences for global navigation satellite system (GNSS) observations. In the research experiment, the authors used single-frequency code observations in the global positioning system (GPS)/global navigation satellite system (GLONASS) system from the on-board receiver Topcon HiperPro and the reference station REF1 (reference station for the airport military EPDE in Deblin in south-eastern Poland). The geodetic Topcon HiperPro receiver was installed in Cessna 172 plane in the aviation test. The paper presents the new methodology in the DGNSS solution in air navigation. The aircraft position was estimated using a “weighted mean” scheme for differential global positioning system and differential global navigation satellite system solution, respectively. The final resultant position of aircraft was compared with precise real-time kinematic – on the fly solution. Findings In the investigations it was specified that the average accuracy of positioning the aircraft Cessna 172 in the geocentric coordinates XYZ equals approximately: +0.03 ÷ +0.33 m along the x-axis, −0.02 ÷ +0.14 m along the y-axis and approximately +0.02 ÷ −0.15 m along the z-axis. Moreover, the root mean square errors determining the measure of the accuracy of positioning of the Cessna 172 for the DGNSS differential technique in the geocentric coordinates XYZ, are below 1.2 m. Research limitations/implications In research, the data from GNSS onboard receiver and also GNSS reference receiver are needed. In addition, the pseudo-range corrections from the base stations were applied in the observation model of the DGNSS solution. Practical implications The presented research method can be used in a ground based augmentation system (GBAS) augmentation system, whereas the GBAS system is still not applied in Polish aviation. Social implications The paper is destined for people who work in the area of aviation and air transport. Originality/value The study presents the DGNSS differential technique as a precise method for recovery of aircraft position in civil aviation and this method can be also used in the positioning of aircraft based on GPS and GLONASS code observations.


Sign in / Sign up

Export Citation Format

Share Document