Flow-separation-control system operating in feedback closed loop

2019 ◽  
Vol 91 (3) ◽  
pp. 498-508
Author(s):  
Wienczyslaw Stalewski ◽  
Andrzej Krzysiak

Purpose The purpose of this study is to develop the concept of self-adapting system which would be able to control a flow on the wing-high-lift system and protect the flow against strong separation. Design/methodology/approach The self-adapting system has been developed based on computational approach. The computational studies have been conducted using the URANS solver. The experimental investigations have been conducted to verify the computational results. Findings The developed solution is controlled by closed-loop-control (CLC) system. As flow actuators, the main-wing trailing-edge nozzles are proposed. Based on signals received from the pressure sensors located at the flap trailing edge, the CLC algorithm changes the amount of air blown from the nozzles. The results of computational simulations confirmed good effectiveness and reliability of the developed system. These results have been partially confirmed by experimental investigations. Research limitations/implications The presented research on an improvement of the effectiveness of high-lift systems of modern aircraft was conducted on the relatively lower level of the technology readiness. However, despite this limitation, the results of presented studies can provide a basis for developing innovative self-adaptive aerodynamic systems that potentially may be implemented in future aircrafts. Practical implications The studies on autonomous flow-separation control systems, operating in a closed feedback loop, are a great hope for significant advances in modern aeronautical engineering, also in the UAV area. The results of the presented studies can provide a basis for developing innovative self-adaptive aerodynamic systems at a higher level of technological readiness. Originality/value The presented approach is especially original and valuable in relation to the innovative concept of high-lift system supported by air-jets blown form the main-wing-trailing-edge nozzles; the effective and reliable flow sensors are the pressure sensors located at the flap trailing edge, and the effective and robust algorithm controlling the self-adapting aerodynamic system – original especially in respect to a strategy of deactivation of flow actuators.

2000 ◽  
Author(s):  
Steve Tung ◽  
Brant Maines ◽  
Fukang Jiang ◽  
Tom Tsao

Abstract A MEMS-based active system is currently under development for flow separation control in the transonic regime. The system consists of micro shear stress sensors for flow sensing and micro balloon actuators for separation control. We have successfully completed the first phase of the program in which the micro sensors and actuators were fabricated and tested in a wind tunnel facility. In the test, the sensors and actuators were flush mounted on a 3D model, which is representative of the upper surface of a wing with a deflected trailing edge flap. The model was installed in the wind tunnel and tested at a series of Mach numbers between 0.2 and 0.6. For all Mach numbers, the sensor output indicates that flow separates over the trailing edge when the micro balloons are in the ‘down’ position. When the micro balloons are inflated, the shear stress level on the trailing edge increases substantially, indicating an improvement of the separation characteristics. This result demonstrates the feasibility of using MEMS sensors and actuators to control flow separation. It is the first step toward the development of a revolutionary closed loop flow control system applicable to existing and future aircraft to enhance aerodynamic performance.


AIAA Journal ◽  
2020 ◽  
Vol 58 (10) ◽  
pp. 4260-4270
Author(s):  
Satoshi Shimomura ◽  
Satoshi Sekimoto ◽  
Akira Oyama ◽  
Kozo Fujii ◽  
Hiroyuki Nishida

2019 ◽  
Vol 91 (7) ◽  
pp. 1058-1066 ◽  
Author(s):  
Mohamed Arif Raj Mohamed ◽  
Ugur Guven ◽  
Rajesh Yadav

Purpose The purpose of this paper is to achieve an optimum flow separation control over the airfoil using passive flow control method by introducing bio-inspired nose near the leading edge of the NACA 2412 airfoil. Design/methodology/approach Two distinguished methods have been implemented on the leading edge of the airfoil: forward facing step, which induces multiple accelerations at low angle of attack, and cavity/backward facing step, which creates recirculating region (axial vortices) at high angle of attack. Findings The porpoise airfoil (optimum bio-inspired nose airfoil) delays the flow separation and improves the aerodynamic efficiency by increasing the lift and decreasing the parasitic drag. The maximum increase in aerodynamic efficiency is 22.4 per cent, with an average increase of 8.6 per cent at all angles of attack. Research limitations/implications The computational analysis has been done for NACA 2412 airfoil at low subsonic speed. Practical implications This design improves the aerodynamic performance and increases structural strength of the aircraft wing compared to other conventional high-lift devices and flow-control devices. Originality/value Different bio-inspired nose designs which are inspired by the cetacean species have been analysed for NACA 2412 airfoil, and optimum nose design (porpoise airfoil) has been found.


2021 ◽  
Vol 93 (2) ◽  
pp. 251-266
Author(s):  
Mohamed Arif Raj Mohamed ◽  
Rajesh Yadav ◽  
Ugur Guven

Purpose This paper aims to achieve an optimum flow separation control over the airfoil using a passive flow control method by introducing a bio-inspired nose near the leading edge of the National Advisory Committee for Aeronautics (NACA) 4 and 6 series airfoil. In addition, to find the optimised leading edge nose design for NACA 4 and 6 series airfoils for flow separation control. Design/methodology/approach Different bio-inspired noses that are inspired by the cetacean species have been analysed for different NACA 4 and 6 series airfoils. Bio-inspired nose with different nose length, nose depth and nose circle diameter have been analysed on airfoils with different thicknesses, camber and camber locations to understand the aerodynamic flow properties such as vortex formation, flow separation, aerodynamic efficiency and moment. Findings The porpoise nose design that has a leading edge with depth = 2.25% of chord, length = 0.75% of chord and nose diameter = 2% of chord, delays the flow separation and improves the aerodynamic efficiency. Average increments of 5.5% to 6° in the lift values and decrements in parasitic drag (without affecting the pitching moment) for all the NACA 4 and 6 series airfoils were observed irrespective of airfoil geometry such as different thicknesses, camber and camber location. Research limitations/implications The two-dimensional computational analysis is done for different NACA 4 and 6 series airfoils at low subsonic speed. Practical implications This design improves aerodynamic performance and increases the structural strength of the aircraft wing compared to other conventional high lift devices and flow control devices. This universal leading edge flow control device can be adapted to aircraft wings incorporated with any NACA 4 and 6 series airfoil. Social implications The results would be of significant interest in the fields of aircraft design and wind turbine design, lowering the cost of energy and air travel for social benefits. Originality/value Different bio-inspired nose designs that are inspired by the cetacean species have been analysed for NACA 4 and 6 series airfoils and universal optimum nose design (porpoise airfoil) is found for NACA 4 and 6 series airfoils.


Sign in / Sign up

Export Citation Format

Share Document