Reduction of power loss by Henry's law-based soluble gas, mobula alfredi and balanced condition optimization algorithms

Author(s):  
Lenin Kanagasabai

Purpose Purpose of this paper are Real power loss reduction, voltage stability enhancement and minimization of Voltage deviation. Design/methodology/approach In HLG approach as per Henry gas law sum of gas dissolved in the liquid is directly proportional to the partial pressure on above the liquid. Gas dissolving in the liquid which based on Henry gas law is main concept to formulate the proposed algorithm. Populations are divided into groups and all the groups possess the similar Henry constant value. Exploration and exploitation has been balanced effectively. Ranking and position of the worst agents is done in order to avoid the local optima. Then in this work Mobula alfredi optimization (MAO) algorithm is projected to solve optimal reactive power problem. Foraging actions of Mobula alfredi has been imitated to design the algorithm. String foraging, twister foraging and backward roll foraging are mathematically formulated to solve the problem. In the entire exploration space the Mobula alfredi has been forced to discover new regions by assigning capricious position. Through this approach, exploration competence of the algorithm has been improved. In all iterations, the position of the Mobula alfredi has been updated and replaced with the most excellent solution found so far. Exploration and exploitation capabilities have been maintained sequentially. Then in this work balanced condition algorithm (BCA) is projected to solve optimal reactive power problem. Proposed BCA approach based on the conception in physics- on the subject of the mass; incoming, exit and producing in the control volume. Preliminary population has been created based on the dimensions and number of particles and it initialized capriciously in the exploration space with minimum and maximum concentration. Production control parameter and Production probability utilized to control the exploration and exploitation. Findings Proposed Henry's Law based -soluble gas optimization (HLG) algorithm, Mobula alfredi optimization (MAO) algorithm and BCA are evaluated in IEEE 30 bus system with L-index (Voltage stability) and also tested in standard IEEE 14, 30, 57, 118, 300 bus test systems without L- index. Real power loss minimization, voltage deviation minimization, and voltage stability index enhancement has been attained. Originality/value For the first time Henry's Law based -soluble gas optimization (HLG) algorithm, Mobula alfredi optimization (MAO) algorithm and BCA is projected to solve the power loss reduction problem.

2018 ◽  
Vol 6 (5) ◽  
pp. 149-156
Author(s):  
K. Lenin

In this paper, Synthesized Algorithm (SA) proposed to solve the optimal reactive power problem. Proposed Synthesized Algorithm (SA) is a combination of three well known evolutionary algorithms, namely Differential Evolution (DE) algorithm, Particle Swarm Optimization (PSO) algorithm, and Harmony Search (HS) algorithm. It merges the general operators of each algorithm recursively. This achieves both good exploration and exploitation in SA without altering their individual properties. In order to evaluate the performance of the proposed SA, it has been tested in Standard IEEE 57,118 bus systems and compared to other standard reported algorithms. Simulation results show’s that Synthesized Algorithm (SA) successfully reduces the real power loss and voltage profiles are within the limits.


Author(s):  
Lenin Kanagasabai

<p><span>To solve optimal reactive power problem this paper projects Hyena Optimizer (HO) algorithm and it inspired from the behaviour of Hyena. Collaborative behaviour &amp; Social relationship between Hyenas is the key conception in this algorithm. Hyenas a form of carnivoran mammal &amp; deeds are analogous to canines in several elements of convergent evolution. Hyenas catch the prey with their teeth rather than claws – possess hardened skin feet with large, blunt, no retractable claws are adapted for running and make sharp turns. However, the hyenas' grooming, scent marking, defecating habits, mating and parental behaviour are constant with the deeds of other feliforms. Mathematical modelling is formulated for the basic attributes of Hyena. Standard IEEE 14,300 bus test systems used to analyze the performance of Hyena Optimizer (HO) algorithm. Loss has been reduced with control variables are within the limits.</span></p>


Author(s):  
Lenin Kanagasabai

In this paper Billfish Optimization Algorithm (BOA) and Red Mullet Optimization (RMO) Algorithm has been designed for voltage stability enhancement and power loss reduction. Electrical Power is one among vital need in the society and also it plays lead role in formation of smart cities. Continuous power supply is essential and mainly quality of the power should be maintained in good mode. In this work real power loss reduction is key objective. Natural hunting actions of Billfish over pilchards are utilized to model the algorithm. Candidate solutions in the projected algorithm are Billfish and population in the exploration space is arbitrarily engendered. Movement of Billfish is high, it will attack the pilchards vigorously and it can’t escape from the attack done by the group of Billfish. Then in this paper Red Mullet Optimization (RMO) Algorithm is proposed to solve optimal reactive power problem. Projected RMO algorithm modeled based on the behavior and characteristics of red mullet. As a group they hunt for the prey and in each group there will be chaser and blocker. When the prey approaches any one of the blocker red mullet then automatically it will turn as new chaser. So roles will interchangeable and very much flexible. At any time chaser will become blocker and any of the blocker will become a chaser with respect to prey position and conditions. Then in that particular area when all the preys are hunted completed then red mullet group will change the area. So there will be flexibility and changing the role quickly with respect to prey position. Alike to that with reference to the fitness function the particle will be chosen as chaser. By means of considering L (voltage stability) - index BOA, and RMO algorithms verified in IEEE 30- bus system. Then without L-index BOA and RMO algorithms is appraised in 30 bus test systems. Both BOA and RMO algorithms condensed the power loss proficiently with improvement in voltage stability and minimization of voltage deviation.


2020 ◽  
Vol 7 (2) ◽  
pp. E1-E6
Author(s):  
L. Kanagasabai

This paper aims to use the Rock Dove (RD) optimization algorithm and the Fuligo Septica optimization (FSO) algorithm for power loss reduction. Rock Dove towards a particular place is based on the familiar (sight) objects on the traveling directions. In the formulation of the RD algorithm, atlas and range operator, and familiar sight operators have been defined and modeled. Every generation number of Rock Dove is reduced to half in the familiar sight operator and Rock Dove segment, which hold the low fitness value that occupying the lower half of the generation will be discarded. Because it is implicit that the individual’s Rock Dove is unknown with familiar sights and very far from the destination place, a few Rock Doves will be at the center of the iteration. Each Rock Dove can fly towards the final target place. Then in this work, the FSO algorithm is designed for real power loss reduction. The natural vacillation mode of Fuligo Septica has been imitated to develop the algorithm. Fuligo Septica connects the food through swinging action and possesses exploration and exploitation capabilities. Fuligo Septica naturally lives in chilly and moist conditions. Mainly the organic matter in the Fuligo Septica will search for the food and enzymes formed will digest the food. In the movement of Fuligo Septica it will spread like a venous network, and cytoplasm will flow inside the Fuligo Septica in all ends. THE proposed RD optimization algorithm and FSO algorithm have been tested in IEEE 14, 30, 57, 118, and 300 bus test systems and simulation results show the projected RD and FSO algorithm reduced the real power loss. Keywords: optimal reactive power, transmission loss, Rock Dove, Fuligo Septica.


Author(s):  
Kanagasabai Lenin

In this work Opposition based Kidney Search Algorithm (OKS) is used to solve the optimal reactive power problem. Kidney search algorithm imitates the various sequences of functions done by biological kidney. Opposition based learning (OBL) stratagem is engaged to commence the algorithm. This is to make certain high-quality of preliminary population and to expand the exploration steps in case of stagnation of the most excellent solutions. Opposition based learning (OBL) is one of the influential optimization tools to boost the convergence speed of different optimization techniques. The thriving implementation of the OBL engages evaluation of opposite population and existing population in the similar generation to discover the superior candidate solution of a given reactive power problem.  Proposed Opposition based Kidney Search Algorithm (OKS) has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the proposed algorithm reduced the real power loss efficiently.


Author(s):  
K. Lenin

In this paper, Enriched Big Bang-Big Crunch (EBC) algorithm is proposed to solve the reactive power problem. The problem of converging to local optimum solutions occurred for the Bang-Big Crunch (BB-BC) approach due to greedily looking around the best ever found solutions. The proposed algorithm takes advantages of typical Big Bang-Big Crunch (BB-BC) algorithm and enhances it with the proper balance between exploration and exploitation factors. Proposed EBC algorithm has been tested in standard IEEE 118 &amp; practical 191 bus test systems and simulation results show clearly the improved performance of the proposed algorithm in reducing the real power loss.


Author(s):  
Kanagasabai Lenin

<p>In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. Dolphins have numerous remarkable natural distinctiveness and living behavior such as echolocation, information interactions, collaboration, and partition of labor. Merging these natural distinctiveness and living behavior with swarm intelligence has been modeled to solve the reactive power problem. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.</p>


Author(s):  
Kanagasabai Lenin

<div data-canvas-width="34.43688268494255">In this paper chaotic predator-prey brain storm optimization (CPB) algorithm is proposed to solve optimal reactive power problem. In this work predator-prey brain storm optimization position cluster centers to perform as predators, consequently it will move towards better and better positions, while the remaining ideas perform as preys; hence get away from their adjacent predators. In the projected CPB algorithm chaotic theory has been applied in the modeling of the algorithm. In the proposed algorithm main properties of chaotic such as ergodicity and irregularity used to make the algorithm to jump out of the local optimum as well as to determine optimal parameters CPB algorithm has been tested in standard IEEE 57 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.</div>


Author(s):  
Anan Zhang ◽  
Shi Chen ◽  
Fan Zhang ◽  
Xuliang Zhang ◽  
Hongwei Li ◽  
...  

Purpose It is very indispensable for the various control centers of multi-transmission system owners (TSOs) grids to coordinate their reactive power optimization (RPO) efforts. However, such coordinated equilibrium point is comparatively hard to achieve unless one TSO control center could obtain all grids’ information in detail, which may lead to confidential issue and heavy communicating load. The purpose of this paper is to propose a solution to optimizing the reactive power control efforts among multi-TSOs grids with a mathematic interconnection model and reasonable communication cost. Design/methodology/approach Based on the interconnected power network equation, the stability-related optimum reactive power injection and the power-loss-related optimum reactive power injection were derived, respectively. Furthermore, according to the decomposition-and-coordination-based computing methodology, a coordinated RPO model for interconnected TSOs was designed, taking into consideration both the static voltage stability and economy. Findings The extreme values for the indicator L of power grid voltage stability and active power loss function were found and proved to be minimums. According to these extreme values, an expression for the reactive power injection at interconnected nodes between TSOs grids was obtained, and a coordinated strategy of RPO was established, which could take the static voltage stability and economy into consideration without confidential concern. Originality/value The existence of minimum values for indicator L of voltage stability and power loss was demonstrated, respectively. And the method presented in this paper can ensure the safety of information among different TSO grids, i.e. avoiding confidential issues. In particular, the coordinated control method can be implemented on the local power grid without knowing all of the parameters of its interconnection.


Sign in / Sign up

Export Citation Format

Share Document