power injection
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 125)

H-INDEX

28
(FIVE YEARS 7)

Wind ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 17-36
Author(s):  
Lilantha Samaranayake ◽  
Carlos E. Ugalde-Loo ◽  
Oluwole D. Adeuyi ◽  
John Licari ◽  
Janaka B. Ekanayake

With the development of offshore wind generation, the interest in cross-country connections is also increasing, which requires models to study their complex static and dynamic behaviors. This paper presents the mathematical modeling of an offshore wind farm integrated into a cross-country HVDC network forming a multi-terminal high-voltage DC (MTDC) network. The voltage source converter models were added with the control of active power, reactive power, frequency, and DC link voltages at appropriate nodes in the MTDC, resembling a typical cross-country multi-terminal type of HVDC scenario. The mathematical model for the network together with the controllers were simulated in MATLABTM and experimentally verified using a real-time digital simulator hardware setup. The resulting static and dynamic responses from the hardware setup agreed well with those from simulations of the developed models.


2021 ◽  
Vol 28 (12) ◽  
pp. 123508
Author(s):  
Yuan Wang ◽  
Xiaoping Li ◽  
Donglin Liu ◽  
Yanming Liu
Keyword(s):  

Author(s):  
Sirisha Bogimi

<p><span lang="EN-US">Nested neutral point clamped multi level inverter with inter connection to grid through the synchronous reference frame (SRF) controller for synchronization of voltage to the grid is demonstrated. The system's main feature is that voltage stress in each inverter switching device is kept to a minimum, and redundant inverter switching states are utilised for neutral point and flying capacitor voltage balancing with sinusoidal pulse-width modulation (PWM) technique, synchronisation to grid voltages, and power injection with low harmonic generation. The inverter receives its input from a photovoltaic (PV) source that is coupled to DC-DC booster converters that are regulated by the maximum power point tracking (MPPT) incremental conductance algorithm to maintain a constant dc voltage. The system is examined under various load conditions with MATLAB Simulink model.</span></p>


Author(s):  
Sirisha Bogimi

<p><span lang="EN-US">Nested neutral-point clamped multi level inverter with inter connection to grid through the synchronous reference frame (SRF) controller for synchronization of voltage to the grid is demonstrated. The system's main feature is that voltage stress in each inverter switching device is kept to a minimum, and redundant inverter switching states are utilised for neutral point and flying capacitor voltage balancing with sinusoidal pulse-width modulation (PWM) technique, synchronisation to grid voltages, and power injection with low harmonic generation. The inverter receives its input from a photovoltaic (PV) source that is coupled to DC-DC booster converters that are regulated by the maximum power point <span lang="EN-US">(MPP)</span> tracking incremental conductance algorithm to maintain a constant dc voltage. The system is examined under various load conditions with MATLAB/Simulink model.</span></p>


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7600
Author(s):  
Anuwat Chanhome ◽  
Surachai Chaitusaney

The Newton–Raphson (NR) method is still frequently applied for computing load flow (LF) due to its precision and quadratic convergence properties. To compute LF in a low voltage distribution system (LVDS) with unbalanced topologies, each branch model in the LVDS can be simplified by defining the neutral and ground voltages as zero and then using Kron’s reduction to transform into a 3 × 3 branch matrix, but this decreases accuracy. Therefore, this paper proposes a modified branch model that is also reduced into a 3 × 3 matrix but is derived from the impedances of the phase-A, -B, -C, neutral, and ground conductors together with the grounding resistances, thereby increasing the accuracy. Moreover, this paper proposes improved LF equations for unbalanced LVDS with both PQ and PV nodes. The improved LF equations are based on the polar-form power injection approach. The simulation results show the effectiveness of the modified branch model and the improved LF equations.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7530
Author(s):  
Noah Serem ◽  
Josiah Munda ◽  
Lawrence Letting

Wind power penetration into the grid is increasing throughout the world due to centralized power generation constraints such as shortage of fossil fuel, need to reduce gas emissions, long transmission losses and need for more supply of electrical power. Connection of wind power into the grid results in power quality issues such as voltage profile changes and harmonics. This necessitates coming up with correction measures in order to meet power quality standards. This paper deals with the analysis of the effects of injecting wind power to the grid on voltage profile. Branch participation factors are used to analyze the sections of the grid where effects on voltage profile are highest due to wind power penetration. Reactive power-voltage sensitivity analysis is used to determine the buses that are more sensitive to the changes brought by the wind power injection. Two cases were considered for the injection of the wind power: IEEE 14 test bus system and IEEE 39 test bus system.


2021 ◽  
Author(s):  
ShuWang Dai ◽  
XiangJun Lu ◽  
Yong Zhang ◽  
Lei Liu ◽  
WenXiao Fang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document