An improved unscented Kalman filter based dynamic state estimation algorithm for electric distribution Systems

Author(s):  
Fiaz Ahmad ◽  
Kabir Muhammad Abdul Rashid ◽  
Akhtar Rasool ◽  
Esref Emre Ozsoy ◽  
Asif Sabanoviç ◽  
...  

Purpose To propose an improved algorithm for the state estimation of distribution networks based on the unscented Kalman filter (IUKF). The performance comparison of unscented Kalman filter (UKF) and newly developed algorithm, termed Improved unscented Kalman Filter (IUKF) for IEEE-30, 33 and 69-bus radial distribution networks for load variations and bad data for two measurement noise scenarios, i.e. 30 and 50 per cent are shown. Design/methodology/approach State estimation (SE) plays an instrumental role in realizing smart grid features like distribution automation (DA), enhanced distribution generation (DG) penetration and demand response (DR). Implementation of DA requires robust, accurate and computationally efficient dynamic SE techniques that can capture the fast changing dynamics of distribution systems more effectively. In this paper, the UKF is improved by changing the way the state covariance matrix is calculated, to enhance its robustness and accuracy under noisy measurement conditions. UKF and proposed IUKF are compared under the cummulative effect of load variations and bad data based on various statistical metrics such as Maximum Absolute Deviation (MAD), Maximum Absolute Per cent Error (MAPE), Root Mean Square Error (RMSE) and Overall Performance Index (J) for three radial distribution networks. All the simulations are performed in MATLAB 2014b environment running on an hp core i5 laptop with 4GB memory and 2.6 GHz processor. Findings An Improved Unscented Kalman Filter Algorithm (IUKF) is developed for distribution network state estimation. The developed IUKF is used to predict network states (voltage magnitude and angle at all buses) and measurements (source voltage magnitude, line power flows and bus injections) in the presence of load variations and bad data. The statistical performance of the coventional UKF and the proposed IUKF is carried out for a variety of simulation scenarios for IEEE-30, 33 and 69 bus radial distribution systems. The IUKF demonstrated superiority in terms of: RMSE; MAD; MAPE; and overall performance index J for two measurement noise scenarios (30 and 50 per cent). Moreover, it is shown that for a measurement noise of 50 per cent and above, UKF fails while IUKF performs. Originality/value UKF shows degraded performance under high measurement noise and fails in some cases. The proposed IUKF is shown to outperform the UKF in all the simulated scenarios. Moreover, this work is novel and has justified improvement in the robustness of the conventional UKF algorithm.

Author(s):  
Fiaz Ahmad ◽  
Muhammad Abdul Kabir Rashid ◽  
Akhtar Rasool ◽  
Eşref Emre Özsoy ◽  
Asif Sabanovic ◽  
...  

AbstractState estimation is an integral component of energy management systems used for the monitoring and control of operation of transmission networks worldwide. However, it has so far not yet been widely adopted in the distribution networks due to their passive nature with no active generation. But this scenario is challenged by the integration of distributed generators (DGs) at this level. Various static and dynamic state estimators have been researched for the transmission systems. These cannot be directly applied to the distribution systems due to their different philosophy of operation. Thus the performance of these estimators need to be re-evaluated for the distribution systems. This paper presents a computational and statistical performance of famous static estimator such as weighted least squares (WLS) and dynamic state estimators such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) for electric distribution system. Additionally, an improved-UKF (IUKF) is also proposed which enhances the robustness and numerical stability of the existing UKF algorithm. All the estimators are tested for load variation and bad data for IEEE-30, 33 and 69 bus radial distribution networks using statistical performance metrics such as Maximum Absolute Deviation (MAD), Maximum Absolute Percent Error (MAPE), Root Mean Square Error (RMSE) and Overall Performance index (J). Based on these metrics, IUKF outperforms other estimators under the simulated noisy measurement conditions.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 60-67 ◽  
Author(s):  
John Edwin Candelo-Becerra ◽  
Helman Hernández-Riaño

<p>Distributed generation (DG) is an important issue for distribution networks due to the improvement in power losses, but the location and size of generators could be a difficult task for exact techniques. The metaheuristic techniques have become a better option to determine good solutions and in this paper the application of a bat-inspired algorithm (BA) to a problem of location and size of distributed generation in radial distribution systems is presented. A comparison between particle swarm optimization (PSO) and BA was made in the 33-node and 69-node test feeders, using as scenarios the change in active and reactive power, and the number of generators. PSO and BA found good results for small number and capacities of generators, but BA obtained better results for difficult problems and converged faster for all scenarios. The maximum active power injections to reduce power losses in the distribution networks were found for the five scenarios.</p>


Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1530 ◽  
Author(s):  
Xi Liu ◽  
Hua Qu ◽  
Jihong Zhao ◽  
Pengcheng Yue ◽  
Meng Wang

Author(s):  
Ping Zhang ◽  
Bei Li ◽  
Guanglong Du

Purpose – This paper aims to develop a wearable-based human-manipulator interface which integrates the interval Kalman filter (IKF), unscented Kalman filter (UKF), over damping method (ODM) and adaptive multispace transformation (AMT) to perform immersive human-manipulator interaction by interacting the natural and continuous motion of the human operator’s hand with the robot manipulator. Design/methodology/approach – The interface requires that a wearable watch is tightly worn on the operator’s hand to track the continuous movements of the operator’s hand. Nevertheless, the measurement errors generated by the sensor error and tracking failure signicantly occur several times, which means that the measurement is not determined with sufficient accuracy. Due to this fact, IKF and UKF are used to compensate for the noisy and incomplete measurements, and ODM is established to eliminate the influence of the error signals like data jitter. Furthermore, to be subject to the inherent perceptive limitations of the human operator and the motor, AMT that focuses on a secondary treatment is also introduced. Findings – Experimental studies on the GOOGOL GRB3016 robot show that such a wearable-based interface that incorporates the feedback mechanism and hybrid filters can operate the robot manipulator more flexibly and advantageously even if the operator is nonprofessional; the feedback mechanism introduced here can successfully assist in improving the performance of the interface. Originality/value – The interface uses one wearable watch to simultaneously track the orientation and position of the operator’s hand; it is not only avoids problems of occlusion, identification and limited operating space, but also realizes a kind of two-way human-manipulator interaction, a feedback mechanism can be triggered in the watch to reflect the system states in real time. Furthermore, the interface gets rid of the synchronization question in posture estimation, as hybrid filters work independently to compensate the noisy measurements respectively.


Sign in / Sign up

Export Citation Format

Share Document