scholarly journals Distributed Generation Placement in Radial Distribution Networks using a Bat-inspired Algorithm

DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 60-67 ◽  
Author(s):  
John Edwin Candelo-Becerra ◽  
Helman Hernández-Riaño

<p>Distributed generation (DG) is an important issue for distribution networks due to the improvement in power losses, but the location and size of generators could be a difficult task for exact techniques. The metaheuristic techniques have become a better option to determine good solutions and in this paper the application of a bat-inspired algorithm (BA) to a problem of location and size of distributed generation in radial distribution systems is presented. A comparison between particle swarm optimization (PSO) and BA was made in the 33-node and 69-node test feeders, using as scenarios the change in active and reactive power, and the number of generators. PSO and BA found good results for small number and capacities of generators, but BA obtained better results for difficult problems and converged faster for all scenarios. The maximum active power injections to reduce power losses in the distribution networks were found for the five scenarios.</p>

Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant ◽  
Luqman Hakim Rahman

In the distribution system, distributed generation (DG) are getting more important because of the electricity demands, fossil fuel depletion and environment concerns. The placement and sizing of DGs have greatly impact on the voltage stability and losses in the distribution network. In this chapter, a particle swarm optimization (PSO) algorithm has been proposed for optimal placement and sizing of DG to improve voltage stability index in the radial distribution system. The two i.e. active power and combination of active and reactive power types of DGs are proposed to realize the effect of DG integration. A specific analysis has been applied on IEEE 33 bus system radial distribution networks using MATLAB 2015a software.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Tung Tran The ◽  
Sy Nguyen Quoc ◽  
Dieu Vo Ngoc

This paper proposes the Symbiotic Organism Search (SOS) algorithm to find the optimal network configuration and the placement of distributed generation (DG) units that minimize the real power loss in radial distribution networks. The proposed algorithm simulates symbiotic relationships such as mutualism, commensalism, and parasitism for solving the optimization problems. In the optimization process, the reconfiguration problem produces a large number of infeasible network configurations. To reduce these infeasible individuals and ensure the radial topology of the network, the graph theory was applied during the power flow. The implementation of the proposed SOS algorithm was carried out on 33-bus, 69-bus, 84-bus, and 119-bus distribution networks considering seven different scenarios. Simulation results and performance comparison with other optimization methods showed that the SOS-based approach was very effective in solving the network reconfiguration and DG placement problems, especially for complex and large-scale distribution networks.


Author(s):  
Arvind Raj ◽  
Nur Fadilah Ab Aziz ◽  
Zuhaila Mat Yasin ◽  
Nur Ashida Salim

Voltage instability in power distribution systems can result in voltage collapse throughout the grid. Today, with the advanced of power generation technology from renewable sources, concerns of utility companies are much being focused on the stability of the grid when there is an integration of distributed generation (DG) in the system.  This paper presents a study on DG units placement and sizing in a radial distribution network by using a pre-developed index called Voltage Stability Condition Index (VSCI). In this paper, VSCI is used to determine DG placement candidates, while the value of power losses is used to identify the best DG placement. The proposed method is tested on a standard 33-bus radial distribution network and compared with existing Ettehadi and Aman methods. The effectiveness of the method is presented in terms of reduction in power system losses, maximization of system loadability and voltage quality improvement. Results show that VSCI can be utilized as the voltage stability indicator for DG placement in radial distribution power system. The integration of DG is found to improve voltage stability by increasing the system loadability and reducing the power losses of the network.


Author(s):  
Su Hlaing Win ◽  
Pyone Lai Swe

A Radial Distribution network is important in power system area because of its simple design and reduced cost. Reduction of system losses and improvement of voltage profile is one of the key aspects in power system operation. Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. Four types of DG are considered in this paper with one DG installed for minimize the total real and reactive power losses. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total real and reactive power losses and to improve voltage profile   in primary distribution system. It can obtain maximum loss reduction for each of four types of optimally placed DGs. Optimal sizing of Distributed Generation can be calculated using exact loss formula and an efficient approach is used to determine the optimum location for Distributed Generation Placement.  To demonstrate the performance of the proposed approach 36-bus radial distribution system in Belin Substation in Myanmar was tested and validated with different sizes and the result was discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sanjay Jain ◽  
Ganga Agnihotri ◽  
Shilpa Kalambe ◽  
Renuka Kamdar

This paper intends to enumerate the impact of distributed generation (DG) on distribution system in terms of active as well as reactive power loss reduction and improved voltage stability. The novelty of the method proposed in this paper is the simple and effective way of sizing and siting of DG in a distribution system by using two-port Z-bus parameters. The validity of the method is verified by comparing the results with already published methods. Comparative study presented has shown that the proposed method leads existing methods in terms of its simplicity, undemanding calculation procedures, and less computational efforts and so does the time. The method is implemented on IEEE 69-bus test radial distribution system and results show significant reduction in distribution power losses with improved voltage profile of the system. Simulation is carried out in MATLAB environment for execution of the proposed algorithm.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Khalid Mohammed Saffer Alzaidi ◽  
Oguz Bayat ◽  
Osman N. Uçan

Distributed generators (DGs) are currently extensively used to reduce power losses and voltage deviations in distribution networks. The optimal location and size of DGs achieve the best results. This study presents a novel hybridization of new metaheuristic optimizations in the last two years, namely, salp swarm algorithm (SSA) and whale optimization algorithm (WOA), for optimal placement and size of multi-DG units in radial distribution systems to minimize total real power losses (kW) and solve voltage deviation. This hybrid algorithm is implemented on IEEE 13- and 123-node radial distribution test systems. The OpenDSS engine is used to solve the power flow to find the power system parameters, such power losses, and the voltage profile through the MATLAB coding interface. Results describe the effectiveness of the proposed hybrid WOA-SSA algorithm compared with those of the IEEE standard case (without DG), repeated load flow method, and WOA and SSA algorithms applied independently. The analysis results via the proposed algorithm are more effective for reducing total active power losses and enhancing the voltage profile for various distribution networks and multi-DG units.


2021 ◽  
Vol 13 (18) ◽  
pp. 10224
Author(s):  
Sasan Azad ◽  
Mohammad Mehdi Amiri ◽  
Morteza Nazari Heris ◽  
Ali Mosallanejad ◽  
Mohammad Taghi Ameli

Considering the strong influence of distributed generation (DG) in electric distribution systems and its impact on network voltage losses and stability, a new challenge has appeared for such systems. In this study, a novel analytical algorithm is proposed to distinguish the optimal location and size of DGs in radial distribution networks based on a new combined index (CI) to reduce active power losses and improve system voltage profiles. To obtain the CI, active power losses and voltage stability indexes were used in the proposed approach. The CI index with sensitivity analysis was effective in decreasing power losses and improving voltage stability. Optimal DG size was determined based on a search algorithm to reduce active power losses. The considered scheme was examined through IEEE 12-bus and 33-bus radial distribution test systems (RDTS), and the obtained results were compared and validated in comparison with other available methods. The results and analysis verified the effectiveness of the proposed algorithm in reducing power losses and improving the distribution system voltage profiles by determining the appropriate location and optimal DG size. In IEEE 12 and 33 bus networks, the minimum voltage increased from 0.9434 p.u and 0.9039 p.u to 0.9907 p.u and 0.9402 p.u, respectively. Additionally, the annual cost of energy losses decreased by 78.23% and 64.37%, respectively.


Distributed generation system penetration in the existing distribution system is done for minimizing the losses and improving the voltage profile. There are total five types of distributed generation systems exist based on their power delivery like distributed generation system injecting real and reactive power, supplying real power only, supplying reactive power only, absorbing reactive power only , supplying real power and absorbing reactive power. All these five types of distributed generation systems have different penetration effects on the radial distribution system. We get different voltage profiles and power losses for different types of distributed generation systems. The testing of these five types of distributed generation systems will be done on IEEE 33 bus radial distribution system. For computing, the line parameters and power losses of the above testing system the forward-backward sweep load flow method will be applied


Sign in / Sign up

Export Citation Format

Share Document