scholarly journals Simulating induction heating processes using harmonic balance FEM

Author(s):  
Klaus Roppert ◽  
Florian Toth ◽  
Manfred Kaltenbacher

Purpose The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-thermal problems and apply it to the heating process of a thin moving steel sheet. Performing efficient numerical simulations of induction heating processes becomes ever more important because of faster production development cycles, where the quasi steady-state solution of the problem plays a pivotal role. Design/methodology/approach To avoid time-consuming transient simulations, the eddy current problem is transformed into frequency domain and a harmonic balancing scheme is used to take into account the nonlinear BH-curve. The thermal problem is solved in steady-state domain, which is carried out by including a convective term to model the stationary heat transport due to the sheet velocity. Findings The presented solution strategy is compared to a classical nonlinear transient reference solution of the eddy current problem and shows good convergence, even for a small number of considered harmonics. Originality/value Numerical simulations of induction heating processes are necessary to fully understand certain phenomena, e.g. local overheating of areas in thin structures. With the presented approach it is possible to perform large 3D simulations without excessive computational resources by exploiting certain properties of the multiharmonic solution of the eddy current problem. Together with the use of nonconforming interfaces, the overall computational complexity of the problem can be decreased significantly.

Author(s):  
Markus Schöbinger ◽  
Karl Hollaus ◽  
Joachim Schöberl

Purpose This paper aims to improve the efficiency of a numerical method to treat the eddy current problem on a laminated material, where using a mesh that resolves each individual laminate would be too computationally expensive. Design/methodology/approach The domain is modeled using a coarse mesh that treats the laminated material as a bulk with averaged properties. The fine-structured behavior is recovered by introducing micro-shape functions in the ansatz space. One such method is analyzed to find further model restrictions. Findings By using a special reformulation, it is possible to eliminate the additional degrees of freedom introduced by the multiscale ansatz at the cost of an additional modeling error that decreases with the laminate thickness. Originality/value The paper gives a computationally more efficient approximate variant to a known multiscale method.


Author(s):  
Valentin Hanser ◽  
Markus Schöbinger ◽  
Karl Hollaus

Purpose This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis. Design/methodology/approach The mixed multiscale finite element method based on the based on the T,Φ-Φ formulation, with the current vector potential T and the magnetic scalar potential Φ allows the laminated core to be modelled as a single homogeneous block. This means that the individual sheets do not have to be resolved, which saves a lot of computing time and reduces the demands on the computer system enormously. Findings As a representative numerical example, a single-phase transformer with 4, 20 and 184 sheets is simulated with great success. The eddy current losses of the simulation using the standard finite element method and the simulation using the mixed multiscale finite element method agree very well and the required simulation time is tremendously reduced. Originality/value The vector Preisach model is used to account for vector hysteresis and is integrated into the mixed multiscale finite element method for the first time.


2012 ◽  
Vol 28 (02) ◽  
pp. 73-81
Author(s):  
Xue-biao Zhang ◽  
Yu-long Yang ◽  
Yu-jun Liu

In shipyards, hull curved plate formation is an important stage with respect to productivity and accuracy control of curved plates. Because the power and its distribution of induction heat source are easier to control and reproduce, induction heating is expected to be applied in the line heating process. This paper studies the moveable induction heating process of steel plate and develops a numerical model of electromagneticthermal coupling analysis and the numerical results consistent with the experimental results. The numerical model is used to analyze the temperature changing rules and the influences on plate temperature field of heating speed of moveable induction heating of steel plate, and the following conclusions are drawn. First, the process of moveable induction heating of steel plate can be divided into three phases of initial state, quasi-steady state, and end state. The temperature difference between the top and bottom surfaces of the steel plate at the initial state is the biggest; it remains unchanged at the quasi-steady state and it is the smallest at the end state. Second, obvious end effect occurs when the edges of the steel plate are heated by the inductor, which causes a decrease in temperature difference between the top and bottom surfaces of the steel plate that is unfavorable for formation of pillow shape plates. Third, with the increase of heating speed, the temperature difference between the top and bottom surfaces of the steel plate increases gradually.


Sign in / Sign up

Export Citation Format

Share Document