Field review of ‘A/S’ level chemistry textbooks

1964 ◽  
Vol 6 (11) ◽  
pp. 538-540
Author(s):  
MICHAEL BASSEY
Keyword(s):  
Author(s):  
Peter Atkins

Illustrated with remarkable new full-color images--indeed, one or more on every page--and written by one of the world's leading authorities on the subject, Reactions offers a compact, pain-free tour of the inner workings of chemistry. Reactions begins with the chemical formula almost everyone knows--the formula for water, H2O--a molecule with an "almost laughably simple chemical composition." But Atkins shows that water is also rather miraculous--it is the only substance whose solid form is less dense than its liquid (hence ice floats in water)--and incredibly central to many chemical reactions, as it is an excellent solvent, being able to dissolve gases and many solids. Moreover, Atkins tells us that water is actually chemically aggressive, and can react with and destroy the compounds dissolved in it, and he shows us what happens at the molecular level when water turns to ice--and when it melts. Moving beyond water, Atkins slowly builds up a toolkit of basic chemical processes, including precipitation (perhaps the simplest of all chemical reactions), combustion, reduction, corrosion, electrolysis, and catalysis. He then shows how these fundamental tools can be brought together in more complex processes such as photosynthesis, radical polymerization, vision, enzyme control, and synthesis. Peter Atkins is the world-renowned author of numerous best-selling chemistry textbooks for students. In this crystal-clear, attractively illustrated, and insightful volume, he provides a fantastic introductory tour--in just a few hundred colorful and lively pages - for anyone with a passing or serious interest in chemistry.


1965 ◽  
Vol 68 (4) ◽  
pp. 491
Author(s):  
Sheldon H. Cohen ◽  
J. Kirk Romary
Keyword(s):  

Química Nova ◽  
2020 ◽  
Author(s):  
Cintia Lima ◽  
José Silva

The classification of chemical substances is a concept little explored in Chemistry teaching literature and in Chemistry textbooks at higher and secondary levels. The aim of this paper is to discuss theoretically the importance and contributions of this concept for teaching and learning Chemistry. The History of Chemistry reveals that the chemical criteria for classifying materials came up with the modern concepts of chemical element and chemical reaction, which gave rise to the notion of chemical similarity. Later, such similarity was related to molecular structure through functional groups. The classes of substances are related throughout chemical reactions, during which substances of given classes are transformed into substances of other classes, constituting a wide network. The classification of chemical substances can contribute to the intellectual development of Chemistry students, in order to study it, it becomes necessary to understand its theoretical foundation, as well as its characteristics of objectivity, completeness, simplicity and prediction. In this sense, one can contribute to the stimulation of perception, attention and abstraction t hat are typical of the chemical ways of thinking and communicating necessary for learning the chemical concepts linked to classification.


Author(s):  
Bayu Antrakusuma ◽  
Mohammad Masykuri ◽  
Maria Ulfa

<p class="Abstract">The aim of this research was to determine the analysis of science process skills in textbooks of chemistry grade XI in SMA N 1 Teras, Boyolali. This research used the descriptive method. The instruments were developed based on 10 indicators of science process skills (observing, classifying, finding a conclusion, predicting, raising the question, hypothesizing, planning an experiment, manipulating materials, and equipment, Applying, and communicating). We analyzed 3 different chemistry textbooks that often used by teachers in teaching. The material analyzed in the book was solubility and solubility product concept in terms of concept explanation and student activity. The results of this research showed different science process skill criteria in 3 different chemistry textbooks. Book A appeared 50% of all aspects of science process skills, in Book B appeared 80% of all aspects of science process skills, and in Book C there was 40% of all aspects of the science process skills. The most common indicator in all books was observing (33.3%), followed by prediction (19.05%), classifying (11.90%), Applying (11.90% ), planning experiments (9.52%), manipulating materials and equipment (7.14%), finding conclusion (4.76%), communicating (2.38%). Asking the question and hypothesizing did not appear in textbooks.</p>


Sign in / Sign up

Export Citation Format

Share Document