A novel approach for the analytical solution of nonlinear time-fractional differential equations

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haiyan Zhang ◽  
Muhammad Nadeem ◽  
Asim Rauf ◽  
Zhao Guo Hui

Purpose The purpose of this paper is to suggest the solution of time-fractional Fornberg–Whitham and time-fractional Fokker–Planck equations by using a novel approach. Design/methodology/approach First, some basic properties of fractional derivatives are defined to construct a novel approach. Second, modified Laplace homotopy perturbation method (HPM) is constructed which yields to a direct approach. Third, two numerical examples are presented to show the accuracy of this derived method and graphically results showed that this method is very effective. Finally, convergence of HPM is proved strictly with detail. Findings It is not necessary to consider any type of assumptions and hypothesis for the development of this approach. Thus, the suggested method becomes very simple and a better approach for the solution of time-fractional differential equations. Originality/value Although many analytical methods for the solution of fractional partial differential equations are presented in the literature. This novel approach demonstrates that the proposed approach can be applied directly without any kind of assumptions.

2014 ◽  
Vol 18 (5) ◽  
pp. 1573-1576 ◽  
Author(s):  
Li-Mei Yan ◽  
Feng-Sheng Xu

A generalized exp-function method is proposed to solve non-linear space-time fractional differential equations. The basic idea of the method is to convert a fractional partial differential equation into an ordinary equation with integer order derivatives by fractional complex transform. To illustrate the effectiveness of the method, space-time fractional asymmetrical Nizhnik-Novikor-Veselov equation is considered. The fractional derivatives in the present paper are in Jumarie?s modified Riemann-Liouville sense.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Nadeem ◽  
Ji-Huan He

Purpose The purpose of this paper is to find an approximate solution of a fractional differential equation. The fractional Newell–Whitehead–Segel equation (FNWSE) is used to elucidate the solution process, which is one of the nonlinear amplitude equation, and it enhances a significant role in the modeling of various physical phenomena arising in fluid mechanics, solid-state physics, optics, plasma physics, dispersion and convection systems. Design/methodology/approach In Part 1, the authors adopted Mohand transform to find the analytical solution of FNWSE. In this part, the authors apply the fractional complex transform (the two-scale transform) to convert the problem into its differential partner, and then they introduce the homotopy perturbation method (HPM) to bring down the nonlinear terms for the approximate solution. Findings The HPM makes numerical simulation for the fractional differential equations easy, and the two-scale transform is a strong tool for fractal models. Originality/value The HPM with the two-scale transform sheds a bright light on numerical approach to fractional calculus.


2019 ◽  
Vol 38 (4) ◽  
pp. 97-110
Author(s):  
Nasibeh Seyedi ◽  
Habibollah Saeedi

In this paper, we propose an efficient operational formulation of spectral tau method d for solving multi-term time fractional differential equations with initial-b boundary conditions. The shifted hybrid Gegenbauer functions (SHGFs) operational matrices of Riemann-Liouville fractional integral and Caputo fractional derivatives are presented. By using these operational matrices, the shifted hybrid Gegenbauer functions tau method for both temp oral and spatial discretization are presented, which allow us to introduce an efficient spectral method for solving such problems. Finally, numerical results show good deal with the theoretical analysis.


2018 ◽  
Vol 21 (2) ◽  
pp. 312-335 ◽  
Author(s):  
Xiao-Li Ding ◽  
Juan J. Nieto

AbstractIn this paper, we consider the analytical solutions of multi-term time-space fractional partial differential equations with nonlocal damping terms for general mixed Robin boundary conditions on a finite domain. Firstly, method of reduction to integral equations is used to obtain the analytical solutions of multi-term time fractional differential equations with integral terms. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the multi-term time-space fractional partial differential equations with nonlocal damping terms to the multi-term time fractional differential equations with integral terms. By applying the obtained analytical solutions to the resulting multi-term time fractional differential equations with integral terms, the desired analytical solutions of the multi-term time-space fractional partial differential equations with nonlocal damping terms are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
A. A. Hemeda

The modified homotopy perturbation method is extended to derive the exact solutions for linear (nonlinear) ordinary (partial) differential equations of fractional order in fluid mechanics. The fractional derivatives are taken in the Caputo sense. This work will present a numerical comparison between the considered method and some other methods through solving various fractional differential equations in applied fields. The obtained results reveal that this method is very effective and simple, accelerates the rapid convergence of the series solution, and reduces the size of work to only one iteration.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


2021 ◽  
Vol 15 ◽  
pp. 174830262110084
Author(s):  
Xianjuan Li ◽  
Yanhui Su

In this article, we consider the numerical solution for the time fractional differential equations (TFDEs). We propose a parallel in time method, combined with a spectral collocation scheme and the finite difference scheme for the TFDEs. The parallel in time method follows the same sprit as the domain decomposition that consists in breaking the domain of computation into subdomains and solving iteratively the sub-problems over each subdomain in a parallel way. Concretely, the iterative scheme falls in the category of the predictor-corrector scheme, where the predictor is solved by finite difference method in a sequential way, while the corrector is solved by computing the difference between spectral collocation and finite difference method in a parallel way. The solution of the iterative method converges to the solution of the spectral method with high accuracy. Some numerical tests are performed to confirm the efficiency of the method in three areas: (i) convergence behaviors with respect to the discretization parameters are tested; (ii) the overall CPU time in parallel machine is compared with that for solving the original problem by spectral method in a single processor; (iii) for the fixed precision, while the parallel elements grow larger, the iteration number of the parallel method always keep constant, which plays the key role in the efficiency of the time parallel method.


Sign in / Sign up

Export Citation Format

Share Document