Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping terms

2018 ◽  
Vol 21 (2) ◽  
pp. 312-335 ◽  
Author(s):  
Xiao-Li Ding ◽  
Juan J. Nieto

AbstractIn this paper, we consider the analytical solutions of multi-term time-space fractional partial differential equations with nonlocal damping terms for general mixed Robin boundary conditions on a finite domain. Firstly, method of reduction to integral equations is used to obtain the analytical solutions of multi-term time fractional differential equations with integral terms. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the multi-term time-space fractional partial differential equations with nonlocal damping terms to the multi-term time fractional differential equations with integral terms. By applying the obtained analytical solutions to the resulting multi-term time fractional differential equations with integral terms, the desired analytical solutions of the multi-term time-space fractional partial differential equations with nonlocal damping terms are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.

2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
E. A. Abdel-Rehim

AbstractIn this review paper, I focus on presenting the reasons of extending the partial differential equations to space-time fractional differential equations. I believe that extending any partial differential equations or any system of equations to fractional systems without giving concrete reasons has no sense. The experiments agrees with the theoretical studies on extending the first order-time derivative to time-fractional derivative. The simulations of some processes also agrees with the theory of continuous time random walks for extending the second-order space fractional derivative to the Riesz–Feller fractional operators. For this aim, I give a condense review the theory of Brownian motion, Langevin equations, diffusion processes and the continuous time random walk. Some partial differential equations that are successfully extended to space-time-fractional differential equations are also presented.


Author(s):  
Süleyman Çetinkaya ◽  
Ali Demir

In this study, solutions of time-space fractional partial differential equations(FPDEs) are obtained by utilizing the Shehu transform iterative method. The utilityof the technique is shown by getting numerical solutions to a large number of FPDEs.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Mehmet Ali Akinlar ◽  
Muhammet Kurulay

A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as well as a more general fractional differential equation.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ji Juan-Juan ◽  
Guo Ye-Cai ◽  
Zhang Lan-Fang ◽  
Zhang Chao-Long

A table lookup method for solving nonlinear fractional partial differential equations (fPDEs) is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1)-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Weishi Yin ◽  
Fei Xu ◽  
Weipeng Zhang ◽  
Yixian Gao

This paper is devoted to finding the asymptotic expansion of solutions to fractional partial differential equations with initial conditions. A new method, the residual power series method, is proposed for time-space fractional partial differential equations, where the fractional integral and derivative are described in the sense of Riemann-Liouville integral and Caputo derivative. We apply the method to the linear and nonlinear time-space fractional Kuramoto-Sivashinsky equation with initial value and obtain asymptotic expansion of the solutions, which demonstrates the accuracy and efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document