A comparative analysis on the single-phase and two-phase mixture models for calculation of ferrofluid convective heat transfer in the presence of a magnetic field: a numerical study

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamed Jafari ◽  
Mohammad Goharkhah ◽  
Alireza Mahdavi Nejad

Purpose This paper aims to analyze the accuracy of the single and two-phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field. The findings of current study are compared with previous single-phase numerical results and experimental data. Accordingly, the effect of various parameters including nanoparticles concentration, Reynolds number and magnetic field strength on the performance of the single and two-phase models are evaluated. Design/methodology/approach A two-phase mixture numerical study is carried out to investigate the influence of four U-shaped electromagnets on the hydrodynamic and thermal characteristics of Fe3O4/Water ferrofluid flowing inside a heated channel. Findings It is observed that the applied external magnetic field signifies the convective heat transfer from the channel surface, despite local reduction at a few locations. The maximum heat transfer enhancement is predicted as 23% and 25% using single and two-phase models, respectively. The difference between the results of the two models is mainly attributed to the slip velocity effect which is accounted for in the two-phase model. The magnetic field gradient leads to a significant increase in the slip velocity which in turn causes a slight difference in velocity and temperature profiles obtained by the single and two-phase models in the magnetic field region. According to percentage error calculation, the two-phase method is generally more accurate than the single-phase method. However, the percentage error of both models improves by decreasing either magnetic field intensity or Reynolds number. Originality/value For the first time in the literature, to the best of the authors’ knowledge, the current work analyzes the accuracy of the single and two phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field.

Author(s):  
Chenfei Wang ◽  
Dongdong Gao ◽  
Minli Bai ◽  
Peng Wang ◽  
Yubai Li

Abstract Nanofluids is reported to significantly enhance heat transfer but with little cost of pressure loss. To further the enhancement of heat transfer using Fe3O4 nanofluids, a magnetic field is employed to control the trajectory of Fe3O4 nanoparticles. A numerical study is conducted with commercial soft ANSYS FLUENT and the simulations are done with a two-phase flow approach named Euler-Lagrange. By comparing heat transfer of laminar flow in a horizontal tube with magnetic field or not, various volume fraction (0.5%/2%) and Reynolds numbers (Re = 200–1000) are considered. Results show that magnetic field contributes an average 4% promotion in convective heat transfer coefficients compared with the condition of no magnet. The mechanism of the enhancement of heat transfer with magnetic field is explored based on the analysis of velocity field. Fe3O4 Nanoparticles move up and down under the magnetic force, and convective heat transfer is enhanced because of the disturbance of the Fe3O4 nanoparticles. Slip flow between the base fluid and nanoparticles also contributes to the enhancement of heat transfer.


2020 ◽  
Vol 31 (7) ◽  
pp. 3050-3061
Author(s):  
Zhaoping Ying ◽  
Boshu He ◽  
Di He ◽  
Yucheng Kuang ◽  
Jie Ren ◽  
...  

Author(s):  
Sinan Goktepe ◽  
Kunt Atalik ◽  
Hakan Erturk

Hydrodynamic and thermal characteristics of Al2O3 – water nanofluid flow at entry region of a uniformly heated pipe are studied applying finite control volume method (FCV). Single phase and Eulerian-Eulerian two-phase models were used in modelling of nanofluid flow and heat transfer. The two methods are evaluated by comparing predicted convective heat transfer coefficients and friction factor with experimental results from literature. Solutions with two different velocity pressure coupling algorithms, Full Multiphase Coupled, and Phase Coupled Semi-Implicit Method for Pressure Linked Equations are also compared in terms of accuracy and computational cost. Two-phase model predicts convective heat transfer coefficient and friction factor more accurately at the entry region. Moreover, computational cost can be reduced by implementing Full Multiphase Coupled scheme.


Sign in / Sign up

Export Citation Format

Share Document