Fluid-structure interaction analysis of buoyancy-driven fluid and heat transfer through an enclosure with a flexible thin partition

2018 ◽  
Vol 28 (9) ◽  
pp. 2072-2088 ◽  
Author(s):  
H. Zargartalebi ◽  
M. Ghalambaz ◽  
A. Chamkha ◽  
Ioan Pop ◽  
Amir Sanati Nezhad

Purpose A numerical model of an unsteady laminar free convection flow and heat transfer is studied in a cavity that comprises a vertical flexible thin partition. Design/methodology/approach The left and right vertical boundaries are isothermal, while the horizontal boundaries are insulated. Moreover, the thin partition, placed in the geometric centerline of the enclosure, is considered to be hyper elastic and diathermal. Galerkin finite-element methods, the system of partial differential equations along with the appropriate boundary conditions are transformed to a weak form through the fluid-structure interaction and solved numerically. Findings The heat transfer characteristics of the enclosure with rigid and flexible partitions are compared. The effect of Rayleigh number and Young’s modulus on the maximum nondimensional stress and final deformed shape of the membrane is addressed. Originality/value Incorporation of vertical thin flexible membrane in middle of a cavity has numerous industrial applications, and it could noticeably affect the heat and mass transfer in the enclosure.

2019 ◽  
Vol 30 (6) ◽  
pp. 2883-2911 ◽  
Author(s):  
Mohammad Ghalambaz ◽  
S.A.M. Mehryan ◽  
Muneer A. Ismael ◽  
Ali Chamkha ◽  
D. Wen

Purpose The purpose of the present paper is to model a cavity, which is equally divided vertically by a thin, flexible membrane. The membranes are inevitable components of many engineering devices such as distillation systems and fuel cells. In the present study, a cavity which is equally divided vertically by a thin, flexible membrane is model using the fluid–structure interaction (FSI) associated with a moving grid approach. Design/methodology/approach The cavity is differentially heated by a sinusoidal time-varying temperature on the left vertical wall, while the right vertical wall is cooled isothermally. There is no thermal diffusion from the upper and lower boundaries. The finite-element Galerkin technique with the aid of an arbitrary Lagrangian–Eulerian procedure is followed in the numerical procedure. The governing equations are transformed into non-dimensional forms to generalize the solution. Findings The effects of four pertinent parameters are investigated, i.e., Rayleigh number (104 = Ra = 107), elasticity modulus (5 × 1012 = ET = 1016), Prandtl number (0.7 = Pr = 200) and temperature oscillation frequency (2p = f = 240p). The outcomes show that the temperature frequency does not induce a notable effect on the mean values of the Nusselt number and the deformation of the flexible membrane. The convective heat transfer and the stretching of the thin, flexible membrane become higher with a fluid of a higher Prandtl number or with a partition of a lower elasticity modulus. Originality/value The authors believe that the modeling of natural convection and heat transfer in a cavity with the deformable membrane and oscillating wall heating is a new subject and the results have not been published elsewhere.


2019 ◽  
Vol 29 (10) ◽  
pp. 3756-3780 ◽  
Author(s):  
Ammar I. Alsabery ◽  
Habibis Saleh ◽  
Mohammad Ghalambaz ◽  
Ali J. Chamkha ◽  
Ishak Hashim

Purpose This paper aims to investigate the fluid structure interaction analysis of conjugate natural convection in a square containing internal solid cylinder and flexible right wall. Design/methodology/approach The right wall of the cavity is flexible, which can be deformed due to the interaction with the natural convection flow in the cavity. The top and bottom walls of the cavity are insulated while the right wall is cold and the left wall is partially heated. The governing equations for heat, flow and elastic wall, as well as the grid deformation are written in Arbitrary Lagrangian–Eulerian formulation. The governing equations along with their boundary conditions are solved using the finite element method. Findings The results of the present study show that the presence of the solid cylinder strongly affects the transient solution at the initial times. The natural convection flow changes the shape of the flexible right wall of the cavity into S shape wall due to the interaction of the flow and the structure. It is found that the increase of the flexibility of the right wall increases the average Nusselt number of the hot wall up to 2 per cent. Originality/value To the best of the authors' knowledge, the unsteady natural convection in an enclosure having a flexible wall and inner solid cylinder has never been reported before.


2018 ◽  
Vol 70 (3) ◽  
pp. 544-551
Author(s):  
Xiaojing Wang ◽  
Guojia Man ◽  
Mengjian Zhang

Purpose Internal leakage is one of the key factors that influence the super-low speed performance of continuous rotary electro-hydraulic servo motor. Therefore, this paper aims to study the change rule of internal leakage for improving the low speed performance of motor. Design/methodology/approach The mathematical models of internal leakage of continuous rotary electro-hydraulic servo motor were established, and according to the working principle of the motor, the 3D models of internal leakage location were established. Simulation analysis was implemented on the continuous rotary electro-hydraulic servo motor by the finite element analysis software ANSYS based on the fluid-structure interaction theory. Findings The results show the deformation of motor’s key parts and the changing rule of internal leakage. The effect of the leakage to the low speed performance of electro-hydraulic servo motor was analyzed, and at the same time, the motor’s leakage experiment was also conducted to verify the validity of simulation results. Originality/value This paper lays the foundation for improving the low speed performance of motor.


2010 ◽  
Vol 2010.6 (0) ◽  
pp. 101-102
Author(s):  
Naohiro NAGANO ◽  
Kazuyasu SUGIYAMA ◽  
Shintaro TAKEUCHI ◽  
Satoshi II ◽  
Shu TAKAGI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document