convection and heat transfer
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Dhia Massoudi ◽  
Mohamed Bechir Ben Hamida ◽  
Mohammed A. Almeshaal ◽  
Yahya Ali Rothan ◽  
Khalil Hajlaoui

Purpose The purpose of this paper is to examine numerically the magnetohydrodynamic (MHD) free convection and thermal radiation heat transfer of single walled carbon nanotubes-water nanofluid within T-inverted shaped corrugated cavity comprising porous media including uniform heat source/sink for solar energy power plants applications. Design/methodology/approach The two-dimensional numerical simulation is performed by drawing on Comsol Multiphysics program, based on the finite element process. Findings The important results obtained show that increasing numbers of Rayleigh and Darcy and the parameter of radiation enhance the flow of convection heat. Furthermore, by increasing the corrugation height, the convection flow increases, but it decreases with the multiplication of the corrugation height. The use of a flat cavity provides better output than a corrugated cavity. Originality/value The role of surface corrugation parameters on the efficiency of free convection and heat transfer of thermal radiation within the porous media containing the T-inverted corrugated cavity including uniform heat source/sink under the impact of Lorentz forces has never been explored. A contrast is also established between a flat cavity and a corrugated one.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


2021 ◽  
Vol 118 (3) ◽  
pp. 487-506
Author(s):  
Suvash C. Saha ◽  
Ali M. Sefidan ◽  
Atta Sojoudi ◽  
Mohammad M. Molla

Author(s):  
Cátia C. Azevedo ◽  
Carolina M. L. Camargo ◽  
José Alves ◽  
Rui M. A. Caldeira

AbstractThe interaction between the incoming winds with high mountainous islands produces a wind-sheltered area in the leeward side, known as the atmospheric wake. In addition to weaker winds, the wake is also characterized by a clearing of clouds, resulting in intense solar radiation reaching the sea surface. As a consequence, a warm oceanic wake forms on the leeward side. This phenomenon detectable from space can extend 100 km offshore of Madeira, where the sea surface temperature can be 4⁰C higher than the surrounding oceanic waters. This study considers in-situ, remote sensing, and ocean circulation model data, to investigate the effects of the warm wake in the vertical structure of the upper ocean. To characterize the convective layer (25-70m) developing within the oceanic wake, 200 vertical profiles of temperature, salinity and turbulence were considered, together with the computation of the Density Ratio and Turner-angle. In comparison to the open-ocean water column, wake waters are strongly stratified with respect to temperature although highly unstable. The vertical profiles of salinity show distinct water parcels that sink and/or rise as a response to the intense heat fluxes. During the night, the ocean surface cools, leading to the stretching of the mixed layer which was replicated by the ocean circulation model. In exposed, non-wake regions however, particularly in the southeast and north coast of the island, the stretching of the mixed layer is not detectable.


2020 ◽  
Vol 34 ◽  
pp. 7-15
Author(s):  
Volodymyr Dovhaliuk ◽  
Y. Chоvniuk ◽  
M. Shyshyna ◽  
A. Moskvitina

Fundamental analysis of the thermal conductivity and viscosity of quasi-solid capillary-porous bodies (CPBs), which are museum exhibits’ materials, is presented. The air environment parameters change leads to a temperature gradient in the CPBs. Non-uniform heating of the solid medium, in particular, quasi-solid CPB, is not accompanied by convection, and heat transfer is carried out only due to the mechanism of thermal conductivity. In order to create a mathematical model of this process in CPB, a system of partial differential equations in time and space coordinates is obtained. The resulting system adequately describes the thermal conductivity process in quasi-solid CPBs. The anisotropy of CPB’s thermal parameters, especially, its coefficients of thermal expansion and thermal conductivity, is also taken into account. Theoretically, the deformation process during motion in quasi-solid CPB is taken as reversible. In real conditions, the process is thermodynamically reversible only when it occurs at an infinitesimal speed. Then at each point in time, the CPB is able to establish a thermodynamic equilibrium state. Real motion occurs at a finite velocity, the CPB is not in an equilibrium state at any given moment, so there are endogenous processes that try to get it into a balanced condition. The occurrence of these processes causes the irreversibility of motion, which acts, in particular, through the dissipation of mechanical energy, which eventually turns into heat. The energy dissipation is caused by irreversible processes of thermal conductivity and processes of internal friction or viscosity. The dissipative function for isotropic and anisotropic cases was determined in order to analyze the viscosity of quasi-solid CPBs. The viscosity in the equations of motion can be considered by replacing the stress tensor with a tensor, which additionally takes into account the "dissipative" stress tensor.


Sign in / Sign up

Export Citation Format

Share Document