Soret and Dufour effects in three-dimensional flow of Maxwell fluid with chemical reaction and convective condition

Author(s):  
T. Hayat ◽  
M. Bilal Ashraf ◽  
A. Alsaedi ◽  
M. S. Alhothuali

Purpose – The purpose of this paper is to address the heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface with convective boundary conditions. Mass transfer is considered in the presence of first order chemical reaction. Conservation laws of energy and concentration are based upon the Soret and Dufour effects. Convergent series solutions to the resulting non-linear problems are developed. Effects of Biot and Deborah numbers on the Sherwood number are decreasing. Local Nusselt reduces with an increase in Eckert numbers. It is also interesting to note further that variations of Prandtl and Biot numbers on the Nusselt number are increasing while Sherwood number decreases with an increase in Prandtl number. Design/methodology/approach – The involved partial differential systems are reduced to the ordinary differential systems using appropriate transformations. Series solutions by homotopy analysis method are constructed and analyzed. Graphical results are presented and examined in detail. Findings – It is found that roles of Deborah and Biot parameters on the Nusselt number are opposite. However, the Sherwood number is qualitative similar for both Biot and Deborah numbers. It is also interesting to note further that variations of Prandtl and Biot numbers on the Nusselt and Sherwood numbers are similar. Originality/value – The purpose of present communication is to investigate the three-dimensional flow of Maxwell fluid over a stretching surface with convective condition. Analysis has been carried out in the presence of mass transfer with first order chemical reaction and Soret and Dufour effects.

Author(s):  
T. Hayat ◽  
S.A. Shehzad ◽  
A. Alsaedi

Purpose – The purpose of this paper is to investigate the three-dimensional flow of Maxwell fluid with variable thermal conductivity in presence of heat source/sink. Design/methodology/approach – Similarity transformations are utilized to reduce the nonlinear partial differential equations into ordinary differential equations. The governing nonlinear problems are solved by homotopy analysis method. Findings – The paper found that the velocities decrease while temperature increases for higher Hartman number. It is also seen that the thermal boundary layer thickness and temperature are increased with an increase in variable thermal conductivity parameter and heat source/sink parameter. Practical implications – Heat transfer analysis with heat source/sink has pivotal role in many industrial applications like cooling of an infinite metallic plate in a cooling bath, drawing of plastic films, nuclear plants, gas turbines, various propulsion devices for missiles, space vehicles and processes occurring at high temperatures. Originality/value – This study discusses the magnetohydrodynamic three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink. No such analysis exists in the literature yet.


Author(s):  
Tasawar Hayat ◽  
Taseer Muhammad ◽  
Sabir Ali Shehzad ◽  
A. Alsaedi

Purpose – The purpose of this paper is to study the Soret and Dufour effects in three-dimensional flow induced by an exponential stretching surface in a porous medium. Design/methodology/approach – Series solutions are developed. Findings – The authors observed that the temperature profile and thermal boundary layer thickness are enhanced when the authors increase the values of Dufour number. It is also examined that the concentration field and its associated boundary layer thickness are higher for the larger values of Soret number. Originality/value – Such investigation is not available in the literature.


2016 ◽  
Vol 21 (2) ◽  
pp. 359-376
Author(s):  
N.A. Khan ◽  
F. Naz

AbstractThis investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan

Purpose The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects. Design/methodology/approach The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters. Findings The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter. Originality/value Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.


Sign in / Sign up

Export Citation Format

Share Document