scholarly journals Three dimensional flow and mass transfer analysis of a second grade fluid in a porous channel with a lower stretching wall

2016 ◽  
Vol 21 (2) ◽  
pp. 359-376
Author(s):  
N.A. Khan ◽  
F. Naz

AbstractThis investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.

Author(s):  
T. Hayat ◽  
R. Naz ◽  
S. Asghar ◽  
A. Alsaedi

Purpose – The purpose of this paper is to study the heat and mass transfer with Soret-Dufour effects for the magnetohydrodynamic three-dimensional flow of second grade fluid in the rotating frame of reference. Design/methodology/approach – Series solution is obtained by homotopy analysis method. Findings – Increase in Soret number, Schmidt number and Dufour number, the heat transfer increases and mass transfer decreases. Effects of Prandtl and Eckert numbers are qualitatively similar as they assist the temperature profile and reduce the concentration of species. Increase in the length of the channel versus height increases the temperature profile but decreases the concentration field. Increase in the second grade fluid parameter causes reduction in both the temperature and concentration fields. The heat flux values at the lower plate are smaller than the values at the upper plate, whereas the situation is opposite in the case of mass transfer. Originality/value – These findings will be useful for the fluid flow in porous channel.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 635-642 ◽  
Author(s):  
Tasawar Hayat ◽  
Ambreen Safdar ◽  
Muhammad Awais ◽  
Awatif A. Hendi

The three-dimensional unsteady flow induced in a second-grade fluid over a stretching surface has been investigated. Nonlinear partial differential equations are reduced into a system of ordinary differential equations by using the similarity transformations. The homotopy analysis method (HAM) has been implemented for the series solutions. Graphs are displayed for the effects of different parameters on the velocity field.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 278 ◽  
Author(s):  
Sardar Bilal ◽  
Afraz Hussain Majeed ◽  
Rashid Mahmood ◽  
Ilyas Khan ◽  
Asiful H. Seikh ◽  
...  

Current disquisition is presented to excogitate heat and mass transfer features of second grade fluid flow generated by an inclined cylinder under the appliance of diffusion, radiative heat flux, convective and Joule heating effects. Mathematical modelling containing constitutive expressions by obliging fundamental conservation laws are constructed in the form of partial differential equations. Afterwards, transformations are implemented to convert the attained partial differential system into ordinary differential equations. An implicit finite difference method known as the Keller Box was chosen to extract the solution. The impact of the flow-controlling variables on velocity, temperature and concentration profiles are evaluated through graphical visualizations. Variations in skin friction, heat transfer and mass flux coefficients against primitive variables are manipulated through numerical data. It is inferred from the analysis that velocity of fluid increases for incrementing magnitude of viscoelastic parameter and curvature parameter whereas it reduces for Darcy parameter whereas skin friction coefficient decreases against curvature parameter. Assurance of present work is manifested by constructing comparison with previous published literature.


2015 ◽  
Vol 20 (2) ◽  
pp. 239-255 ◽  
Author(s):  
I.G. Baoku ◽  
Y.S. Onifade ◽  
L.O. Adebayo ◽  
K.M. Yusuff

Abstract The investigation deals with the combined heat and mass transfer in a mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic second grade fluid. The partial differential equations governing the model have been transformed by a similarity transformation and the system of coupled-ordinary differential equations is solved by employing the shooting method with the fifth-order Runge-Kutta-Fehlberg iteration technique. Effects of various values of physical parameters embedded in the flow model on the dimensionless velocity, temperature and concentration distributions are discussed and shown with the aid of graphs. Numerical values of physical quantities, such as the local skin-coefficient, local Nusselt number and local Sherwood number are presented in a tabular form. It is observed that the boundary layer fluid velocity increases as the second grade parameter, mixed convection parameter and Prandtl number increase.


CFD Letters ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 35-52
Author(s):  
Mohamad Alif Ismail ◽  
Mohamad Hidayad Ahmad Kamal ◽  
Lim Yeou Jiann ◽  
Anati Ali ◽  
Sharidan Shafie

The study of mass transfer in the non-Newtonian fluid is essential in understanding the engine lubrication, the cooling system of electronic devices, and the manufacturing process of the chemical industry. Optimal performance of the practical applications requires the appropriate conditions. The unsteady transient free convective flow of second-grade fluid with mass transfer and wall transpiration is concerned in the present communication. The behavior of the second-grade fluid under the influence of injection or suction is discussed. Suitable non-dimensional variables are utilized to transform the governing equations into non-dimensional governing equations. A Maple solver “pdsolve” that is using the centered implicit scheme of a finite difference method is utilized to solve the dimensionless governing equations numerically. The effects of wall injection or suction parameter, second-grade fluid viscoelastic parameter, Schmidt number, and modified Grashof number on the velocity and concentration profiles are graphically displayed and analyzed. The results show that with increasing wall suction, viscoelastic parameter, and Schmidt number, the velocity and concentration profiles decrease. Whereas, the velocity profiles show an opposite tendency in situations of wall injection. The wall suction has increased the skin friction and also the rate of mass diffusion in the second-grade fluid.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan

Purpose The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects. Design/methodology/approach The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters. Findings The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter. Originality/value Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.


Sign in / Sign up

Export Citation Format

Share Document