An evolutionary algorithm approach for the constrained multi-depot vehicle routing problem

Author(s):  
Carin Lightner-Laws ◽  
Vikas Agrawal ◽  
Constance Lightner ◽  
Neal Wagner

Purpose – The purpose of this paper is to explore a real world vehicle routing problem (VRP) that has multi-depot subcontractors with a heterogeneous fleet of vehicles that are available to pickup/deliver jobs with varying time windows and locations. Both the overall job completion time and number of drivers utilized are analyzed for the automated job allocations and manual job assignments from transportation field experts. Design/methodology/approach – A nested genetic algorithm (GA) is used to automate the job allocation process and minimize the overall time to deliver all jobs, while utilizing the fewest number of drivers – as a secondary objective. Findings – Three different real world data sets were used to compare the results of the GA vs transportation field experts’ manual assignments. The job assignments from the GA improved the overall job completion time in 100 percent (30/30) of the cases and maintained the same or fewer drivers as BS Logistics (BSL) in 47 percent (14/30) of the cases. Originality/value – This paper provides a novel approach to solving a real world VRP that has multiple variants. While there have been numerous models to capture a select number of these variants, the value of this nested GA lies in its ability to incorporate multiple depots, a heterogeneous fleet of vehicles as well as varying pickup times, pickup locations, delivery times and delivery locations for each job into a single model. Existing research does not provide models to collectively address all of these variants.

2019 ◽  
Vol 16 (5) ◽  
pp. 781-795 ◽  
Author(s):  
Anubha Rautela ◽  
S.K. Sharma ◽  
P. Bhardwaj

Purpose The purpose of this paper is to reduce the distribution cost of an Indian cooperative dairy. The reduction of cost was achieved with the application of the clustering method (k-means clustering) and capacitated vehicle routing problem (cheapest link algorithm (CLA)). Design/methodology/approach Capacitated k-means clustering was used to split delivery locations into similar size groups (i.e. clusters) based on proximity without exceeding a specified total cluster capacity. Each cluster would be served by a local stockist. CLA was then used to find delivery routes from dairy (i.e. depot) to stockist in each cluster and from stockist to all other delivery locations within the cluster. Findings K-means clustering and CLA suggested optimal delivery routes on which vehicles will run. The complete algorithm was able to provide a solution within 30 s. Practical implications Clustering of delivery locations and use of heterogeneous fleet of delivery vehicles can result in considerable savings in daily operational cost. Originality/value Most of the research related to the use of demand clustering to improve distribution routes has been theoretical, which do not take into account real-world limitations like vehicle’s specific limitations. The authors tried to address that gap by taking a real-world case of a cooperative dairy and compared the result with existing distribution routes used by dairy. This work can be used by other dairies or distribution companies according to their scenario.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Yuanyuan Dong ◽  
Andrew V. Goldberg ◽  
Alexander Noe ◽  
Nikos Parotsidis ◽  
Mauricio G. C. Resende ◽  
...  

AbstractWe present a set of new instances of the maximum weight independent set problem. These instances are derived from a real-world vehicle routing problem and are challenging to solve in part because of their large size. We present instances with up to 881 thousand nodes and 383 million edges.


1970 ◽  
Vol 24 (4) ◽  
pp. 343-351 ◽  
Author(s):  
Filip Taner ◽  
Ante Galić ◽  
Tonči Carić

This paper addresses the Vehicle Routing Problem with Time Windows (VRPTW) and shows that implementing algorithms for solving various instances of VRPs can significantly reduce transportation costs that occur during the delivery process. Two metaheuristic algorithms were developed for solving VRPTW: Simulated Annealing and Iterated Local Search. Both algorithms generate initial feasible solution using constructive heuristics and use operators and various strategies for an iterative improvement. The algorithms were tested on Solomon’s benchmark problems and real world vehicle routing problems with time windows. In total, 44 real world problems were optimized in the case study using described algorithms. Obtained results showed that the same distribution task can be accomplished with savings up to 40% in the total travelled distance and that manually constructed routes are very ineffective.


2009 ◽  
Vol 60 (7) ◽  
pp. 934-943 ◽  
Author(s):  
A Ostertag ◽  
K F Doerner ◽  
R F Hartl ◽  
E D Taillard ◽  
P Waelti

2019 ◽  
Vol 119 (9) ◽  
pp. 2055-2071 ◽  
Author(s):  
Gaoyuan Qin ◽  
Fengming Tao ◽  
Lixia Li ◽  
Zhenyu Chen

Purpose In order to reduce logistics transportation costs and respond to low-carbon economy, the purpose of this paper is to study the more practical and common simultaneous pickup and delivery vehicle routing problem, which considers the carbon tax policy. A low-carbon simultaneous pickup and delivery vehicle routing problem model is constructed with the minimum total costs as the objective function. Design/methodology/approach This study develops a mathematical optimization model with the minimum total costs, including the carbon emissions costs as the objective function. An adaptive genetic hill-climbing algorithm is designed to solve the model. Findings First, the effectiveness of the algorithm is verified by numerical experiments. Second, the research results prove that carbon tax mechanism can effectively reduce carbon emissions within effective carbon tax interval. Finally, the research results also show that, under the carbon tax mechanism, the effect of vehicle speed on total costs will become more obvious with the increase of carbon tax. Research limitations/implications This paper only considers the weight of the cargo, but it does not consider the volume of the cargo. Originality/value Few studies focus on environmental issues in the simultaneous pickup and delivery problem. Thus, this paper constructs a green path optimization model, combining the carbon tax mechanism for the problem. This paper further analyzes the impact of carbon tax value on total costs and carbon emission; at the same time, the effect of vehicle speed on total cost is also analyzed.


2020 ◽  
Vol 12 (3) ◽  
pp. 1077
Author(s):  
Keyju Lee ◽  
Junjae Chae ◽  
Bomi Song ◽  
Donghyun Choi

In Southeast Asian cities, it is common for logistic companies to operate a heterogeneous fleet of delivery vehicles with motorcycles being the preferred vehicle to handle the final phase of delivery. In such scenarios, heterogeneous fleet vehicle routing problem (HFVRP) is generally applied to plan an optimal delivery. However, in many downtown cores of large and rapidly developing Southeast Asian cities, HFVRP is neither viable nor reliable because of road usage restrictions. The purpose of this article is to develop and test a different approach that accurately takes these restrictions into account and provides viable and more sustainable results. Restrictions in this paper refer to situations of urban areas in Vietnam where (i) certain vehicle types are prohibited in specified areas or where narrow alleyways limit the utilization of vehicles that exceed the road capacity and (ii) certain roads are exclusive to certain vehicle types. In networks, limited access and exclusive lanes are represented as links, or arcs, exclusive to one or another. Taking these limitations into consideration, we have developed a unique model, which we have termed Vehicle Routing Problem with Exclusive Links (VRP-EL). The model was validated and tested for its performance on scenarios with varying ratios of exclusive links. Scenarios up to 500 customers were tested on a meta-heuristic algorithm, simulated annealing. VRP-EL produces realistic outcomes. Limiting certain links to be selected according to vehicle types increases overall travel distance. However, this increase outweighs the cost of re-planning and rerouting had they not been constrained initially. The reduction in traveling distance leads to fossil fuel reduction for the overall system. The estimation of reduced carbon emissions through applying the proposed model is presented. Considering the severe traffic congestion and carbon emissions caused by motorcycles in Vietnam, the proposed model leads to a sustainable road environment.


Sign in / Sign up

Export Citation Format

Share Document