scholarly journals South Africa’s economic response to monetary policy uncertainty

2017 ◽  
Vol 44 (2) ◽  
pp. 282-293 ◽  
Author(s):  
Mehmet Balcilar ◽  
Rangan Gupta ◽  
Charl Jooste

Purpose The purpose of this paper is to study the evolution of monetary policy uncertainty and its impact on the South African economy. Design/methodology/approach The authors use a sign restricted SVAR with an endogenous feedback of stochastic volatility to evaluate the sign and size of uncertainty shocks. The authors use a nonlinear DSGE model to gain deeper insights about the transmission mechanism of monetary policy uncertainty. Findings The authors show that monetary policy volatility is high and constant. Both inflation and interest rates decline in response to uncertainty. Output rebounds quickly after a contemporaneous decrease. The DSGE model shows that the size of the uncertainty shock matters – high uncertainty can lead to a severe contraction in output, inflation and interest rates. Research limitations/implications The authors model only a few variables in the SVAR – thus missing perhaps other possible channels of shock transmission. Practical implications There is a lesson for monetary policy: monetary policy uncertainty, in isolation from general macroeconomic uncertainty, often creates unintended adverse consequences and can perpetuate a weak economic environment. The tasks of central bankers are incredibly difficult. Their models project output and inflation with relatively large uncertainty based on many shocks emanating from various sources. It matters how central bankers react to these expectations and how they communicate the underlying risks associated with setting interest rates. Originality/value This is the first study that looks into monetary policy uncertainty into South Africa using a stochastic volatility model and a nonlinear DSGE model. The results should be very useful for the Central Bank as it highlights how uncertainty, that they create, can have adverse economic consequences.

Author(s):  
Gene Park ◽  
Saori N. Katada ◽  
Giacomo Chiozza ◽  
Yoshiko Kojo

This chapter discusses deflation, monetary policy responses against deflation, and the Bank of Japan's (BOJ) reluctance to try bolder measures to reflate the economy. Deflation, when the price of goods and services declines, is attributable to a number of causes. It can result from supply-side improvements such as enhanced productivity and thus can coincide with economic growth. However, deflation can also occur through demand-side shocks. These shocks can be the result of policy mistakes. Under such circumstances, deflation can have potentially damaging economic consequences. Some of the monetary policy responses against deflation include forward guidance, quantitative easing (QE), interest rate targeting, negative interest rates, and helicopter money. There are several possible explanations for the BOJ Policy Board's resistance to adopting unconventional monetary policies. It could be that central bankers at the BOJ did not believe that they would be effective. Another explanation is that the BOJ was more hesitant to use QE because of the country's fiscal position.


2015 ◽  
Vol 16 (1) ◽  
pp. 27-48 ◽  
Author(s):  
Thomas Kokholm ◽  
Martin Stisen

Purpose – This paper studies the performance of commonly employed stochastic volatility and jump models in the consistent pricing of The CBOE Volatility Index (VIX) and The S&P 500 Index (SPX) options. With the existence of active markets for volatility derivatives and options on the underlying instrument, the need for models that are able to price these markets consistently has increased. Although pricing formulas for VIX and vanilla options are now available for commonly used models exhibiting stochastic volatility and/or jumps, it remains to be shown whether these are able to price both markets consistently. This paper fills this vacuum. Design/methodology/approach – In particular, the Heston model, the Heston model with jumps in returns and the Heston model with simultaneous jumps in returns and variance (SVJJ) are jointly calibrated to market quotes on SPX and VIX options together with VIX futures. Findings – The full flexibility of having jumps in both returns and volatility added to a stochastic volatility model is essential. Moreover, we find that the SVJJ model with the Feller condition imposed and calibrated jointly to SPX and VIX options fits both markets poorly. Relaxing the Feller condition in the calibration improves the performance considerably. Still, the fit is not satisfactory, and we conclude that one needs more flexibility in the model to jointly fit both option markets. Originality/value – Compared to existing literature, we derive numerically simpler VIX option and futures pricing formulas in the case of the SVJ model. Moreover, the paper is the first to study the pricing performance of three widely used models to SPX options and VIX derivatives.


2009 ◽  
Vol 12 (02) ◽  
pp. 209-225 ◽  
Author(s):  
REHEZ AHLIP ◽  
MAREK RUTKOWSKI

Forward start options are examined in Heston's (Review of Financial Studies6 (1993) 327–343) stochastic volatility model with the CIR (Econometrica53 (1985) 385–408) stochastic interest rates. The instantaneous volatility and the instantaneous short rate are assumed to be correlated with the dynamics of stock return. The main result is an analytic formula for the price of a forward start European call option. It is derived using the probabilistic approach combined with the Fourier inversion technique, as developed in Carr and Madan (Journal of Computational Finance2 (1999) 61–73).


2008 ◽  
Vol 11 (03) ◽  
pp. 277-294 ◽  
Author(s):  
REHEZ AHLIP

In this paper, we present a stochastic volatility model with stochastic interest rates in a Foreign Exchange (FX) setting. The instantaneous volatility follows a mean-reverting Ornstein–Uhlenbeck process and is correlated with the exchange rate. The domestic and foreign interest rates are modeled by mean-reverting Ornstein–Uhlenbeck processes. The main result is an analytic formula for the price of a European call on the exchange rate. It is derived using martingale methods in arbitrage pricing of contingent claims and Fourier inversion techniques.


Risks ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 84
Author(s):  
David Baños ◽  
Marc Lagunas-Merino ◽  
Salvador Ortiz-Latorre

One of the risks derived from selling long-term policies that any insurance company has arises from interest rates. In this paper, we consider a general class of stochastic volatility models written in forward variance form. We also deal with stochastic interest rates to obtain the risk-free price for unit-linked life insurance contracts, as well as providing a perfect hedging strategy by completing the market. We conclude with a simulation experiment, where we price unit-linked policies using Norwegian mortality rates. In addition, we compare prices for the classical Black-Scholes model against the Heston stochastic volatility model with a Vasicek interest rate model.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Ying Chang ◽  
Yiming Wang

We present option pricing under the double stochastic volatility model with stochastic interest rates and double exponential jumps with stochastic intensity in this article. We make two contributions based on the existing literature. First, we add double stochastic volatility to the option pricing model combining stochastic interest rates and jumps with stochastic intensity, and we are the first to fill this gap. Second, the stochastic interest rate process is presented in the Hull–White model. Some authors have concentrated on hybrid models based on various asset classes in recent years. Therefore, we build a multifactor model with the term structure of stochastic interest rates. We also approximated the pricing formula for European call options by applying the COS method and fast Fourier transform (FFT). Numerical results display that FFT and the COS method are much faster than the numerical integration approach used for obtaining the semi-closed form prices. The COS method shows higher accuracy, efficiency, and stability than FFT. Therefore, we use the COS method to investigate the impact of the parameters in the stochastic jump intensity process and the existence of the process on the call option prices. We also use it to examine the impact of the parameters in the interest rate process on the call option prices.


Sign in / Sign up

Export Citation Format

Share Document