Flame behaviour, fire hazard and fire testing approach for lightweight composite claddings – a review

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Md Delwar Hossain ◽  
Md Kamrul Hassan ◽  
Anthony Chun Yin Yuen ◽  
Yaping He ◽  
Swapan Saha ◽  
...  

Purpose The purpose of this study is to review and summarise the existing available literature on lightweight cladding systems to provide detailed information on fire behaviour (ignitibility, heat release rate and smoke toxicity) and various test method protocols. Additionally, the paper discusses the challenges and provides updated knowledge and recommendation on selective-fire mechanisms such as rapid-fire spread, air cavity and fire re-entry behaviours due to dripping and melting of lightweight composite claddings. Design/methodology/approach A comprehensive literature review on fire behaviour, fire hazard and testing methods of lightweight composite claddings has been conducted in this research. In summarising all possible fire hazards, particular attention is given to the potential impact of toxicity of lightweight cladding fires. In addition, various criteria for fire performance evaluation of lightweight composite claddings are also highlighted. These evaluations are generally categorised as small-, intermediate- and large-scale test methods. Findings The major challenges of lightweight claddings are rapid fire spread, smoke production and toxicity and inconsistency in fire testing. Originality/value The review highlights the current challenges in cladding fire, smoke toxicity, testing system and regulation to provide some research recommendations to address the identified challenges.

Author(s):  
N.I. Konstantinova ◽  
◽  
N.V. Smirnov ◽  
O.V. Krivoshapkina ◽  
O.I. Molchadskiy ◽  
...  

Fiber cement finishing materials are widely used in the construction of industrial buildings and structures due to the complex of valuable operational properties. In the Russian market there are fiber-cement panels with a variety of design solutions for their coloring and application of protective coatings. Fiber cement board is a strong and moisture-resistant composite material made from a cement-sand mixture, reinforcing cellulose fibers and special additives. Not being a non-combustible material, the fiber cement boards in accordance with the current mandatory requirements, as a decorative, finishing and facing material for walls and ceilings have restrictions on their use. Existing domestic requirements regarding the methodology for assessing the combustibility of fiber cement products largely narrow the field of using these materials. Therefore, it is advisable to develop the proposals for amending the test methods and the regulatory framework governing their fire-safe extended scope. In the course of this work execution, the main provisions of the regulatory and methodological framework that establish the requirements for the fire-safe use of fiber cement materials are analyzed. Experimental complex studies of fire hazard properties of various types of samples of the fiber cement finishing panels and slabs were carried out. It is established that fiber-cement materials belong to the class of the least fire-hazardous materials. Advisability is determined concerning the introduction to the national regulatory practice of GOST R «Building materials. Test method for fire hazard under thermal exposure with a single burner (SBI)». Classification parameters of the group of non-combustible materials NG2 were established to amend GOST R 57270—2016 (method 1). Classification parameters of the group of non-combustible materials NG2 for making changes in GOST R 57270—2016 (method 1) are established. Proposals were developed to expand the scope of application of the materials and products made of fiber cement as enclosing structures, partitions, and decorative finishes (cladding) in the buildings and structures.


1993 ◽  
Vol 11 (4) ◽  
pp. 287-295 ◽  
Author(s):  
M.A. Delichatsios

We present and demonstrate the application of a systematic methodology for predicting fire spread and growth and for a relative fire hazard classification of materials for any scale and fire environment. This methodol ogy consists of three steps: (1) select laboratory test methods to perform flam mability measurements; (2) based on these measurements, obtain key flamma bility material properties which are precisely defined in this work; and (3) use these properties in a mathematical model of fire spread and growth to predict fire hazards. The complementary test methods we have selected and used are: (a) a general flammability test apparatus (such as NIST or FMRC) [1,2] modified to also provide pyrolysis measurements in an inert N2 atmosphere; (b) the Limited Oxygen Index (LOI) apparatus, which is used here as a tool for ob taining properties needed for creeping flame spread and extinction, including vitiated environments; and (c) a solid material smoke-point height apparatus [8], which is used to characterize the smokiness of the burning material needed to determine the radiation and smoke yield for arbitrary fire situations (wall fires, pool fires or ceiling fires) [8]. The use and proper interpretation of the Limited Oxygen Index apparatus can replace the LIFT [10] apparatus for deter mining in a more accurate and direct way the material properties required for creeping (vertical downward, lateral, horizontal) flame spread. The present methodology has been compared well with experiments in this work and else where [9], and it has been used to predict critical conditions for fire spread [11], not empirically as it is usually done, but based on first principles of fire spread, fire growth and burning, together with material flammability properties syste matically deduced from small-scale test measurements.


Sign in / Sign up

Export Citation Format

Share Document