sand mixture
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 97)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 31 (2) ◽  
pp. 123-134
Author(s):  
Mustafa Abul Kalam Azad ◽  
Md Arifuzzaman ◽  
Md Mobarok Hossain ◽  
Md Sohel Arman ◽  
Muhammad Nurul Amin

Considering the vegetable and medicinal values, a micropropagation protocol has been established for Japanese Burdock (Arctium lappa L.) by culturing the explants of cotyledon and leaf obtained from in vitro grown seedlings. Direct shoot regeneration was achieved from cotyledon and leaf explants on MS fortified with 4.0 μM BAP and 2.0 μM IBA or NAA after 5 weeks of culture. In addition, both the explants also formed callus from their cut margins within 6 weeks of cultivation on medium complemented with 6.0 μM BAP and 4.0 μM IBA or NAA. Adventitious shoots were also redeveloped through indirect organogenesis from the cotyledon and leaf-derived callus within 10 weeks of culture on MS containing 4.0 μM BAP and 2.0 μM IBA or NAA. The highest rate of shoot reproduction was attained at the third subculture, and more than 12.6 shoots were formed per callus clump. Within 4 weeks of transfer to the rooting medium on MS containing 6.0 μM IBA, the cultured micro-shoots produced highest 5.3 roots per cultured shoot. Rooted plantlets were successfully established on a soil-composed-sand mixture under natural condition with 93.3% survival rate Plant Tissue Cult. & Biotech. 31(2): 123-134, 2021 (December)


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Atsuko Fukunaga ◽  
Kailey H. Pascoe ◽  
Ashley R. Pugh ◽  
Randall K. Kosaki ◽  
John H. R. Burns

Recovery of coral reefs after physical damage sustained from storm events can be affected by various factors. Here, we examined the initial recovery of a coral reef at the southern end of uninhabited Lalo Atoll of Papahānaumokuākea Marine National Monument after its complete destruction by Hurricane Walaka in 2018. While the site was still mostly (98%) covered by a mixture of rubble and sand, surveys utilizing underwater photogrammetry allowed for detailed quantitative assessments of benthic cover and confirmed colonization of coral (Pocillopora meandrina and Porites lobata), macroalgae and sponges. The proportion of sand in the rubble–sand mixture also decreased from the level observed in 2019. Visual fish surveys confirmed the presence of 35 reef fish species, a large increase from no reef fish in 2019, despite the low biotic benthic cover. Overall, the colonization of benthic organisms and the return of reef fish, which is potentially supported by the benthos and cryptofauna in the rubble bed, offer positive signs of reef recovery. The photogrammetric surveys in the present study captured the subtle changes in the benthic cover and provided us with a procedure to continue monitoring the succession of the site. Continuous monitoring of the site should reveal whether the reef returns to the original state of Acropora coral dominance or progresses towards a coral assemblage with a different composition.


Author(s):  
Abbad Nofal Kassouha, Raeed Solyman Muhammad, Moustafa Hussi Abbad Nofal Kassouha, Raeed Solyman Muhammad, Moustafa Hussi

The casting technology is one of the most important production processes, because of its special characteristics and features such as the ability to produce complex shapes and a wide range of compositions. This work aims to study several mixtures of sand with different structures in terms of permeability, strength, thermal expansion coefficient, comparing them, study the effect of the elements involved in the composition of these mixtures on those parameters, and create a database that can be used both in modeling processes or mold design, as when designing the sand mold The value of the sand expansion of the mold must be taken into account, otherwise the designer will face the problem of the possibility of exit some dimensions of the final product from the permissible range and thus rejecting the product, Or the product is undergone to deformations resulting from the expansion of mold sands, which must be avoided when designing the mold Knowing the characteristics of those sand mixtures helps the investor in choosing the most appropriate mixture for the required casting process in terms of engineering specifications or quantity, with the aim of less costly production by saving in choosing the most appropriate and least expensive sand mixture that serves the desired purpose.


2021 ◽  
Vol 16 (4) ◽  
pp. 192-211
Author(s):  
Mindaugas Zakarka ◽  
Šarūnas Skuodis ◽  
Rimantas Mackevičius ◽  
Danutė Sližytė

This research work represents updated results of cohesive soil strength improvement with mineral wool fly ash. In the investigations, these materials were used: Portland cement CEM I 42.5 R, fly ash obtained from a mineral wool production process, sand and clay. Mixtures were prepared as follows: dry mixing of Portland cement and fly ash; dry mixing of sand and clay; adding water into Portland cement and fly ash; adding sand and clay mixture into already prepared Portland cement and fly ash suspension. The content of fly ash replacing Portland cement varied from 0% to 40%, and the content of sand mixture varied from 20% to 60%. After 24 hours, investigated samples were taken out from cylinder forms and kept in a desiccator with a humidity of 90% and at 20 °C temperature. Uniaxial compressive strength of the samples was determined after 548 days and compared to previous research results obtained after 7, 28 and 183 days. The most predictable compressive strength is for samples, which composition is 100% cement and 0% fly ash. In these samples, the highest compressive strength was obtained, comparing them to the other investigated samples. Compressive strength change is minimal for samples with a 10–30% amount of fly ash. The most significant decrease in compressive strength was obtained for samples with a 40% fly ash after 183 days. Nonetheless, the compressive strength of these samples increased after 548 days and is almost the same as for samples with 100% Portland cement.


2021 ◽  
Vol 15 (4) ◽  
pp. 8529-8539
Author(s):  
NUR FARAH BAZILAH BINTI WAKHI ANUAR ◽  
M.L. Mohd Khusairi ◽  
R.M. Saad ◽  
S.A. Hassan ◽  
Z. Marjom ◽  
...  

The sand casting process still continues today due to the cost-effectiveness of materials and processes. There is a wide variety of castings related to composition and size, but silica sand is widely available from coastal line mining and has a negative impact on the environment. Moreover, waste from waterjet cutting of non-ferrous and ferrous metals is practically unhazardous and may potentially be used in sand casting mould. The aim of this paper is to optimize the proportion of coal dust, water and bentonite added to the silica sand mixture and the waterjet cutting abrasive waste as a new way of handling waste with the potential to be used in sand casting manufacturing. The method used was L9 orthogonal array optimization and the composition was qualitatively measured using a green compression strength test and a green shear strength test. Factors were evaluated using the analysis of variance (ANOVA) to find the the critical factors while confirmation test was conducted for the optimal material proportion. The study concluded that the ideal ratio for silica sand mixture with waterjet abrasive waste is bentonite-12%, coal dust-5%, and water-7% for green compression strength while bentonite-12%, coal dust-6%, water-7% for green shear strength. With proper selection, the incorporation of waterjet abrasive waste into the green sand mixture is promising to potentially be used in green sand mould casting without undermine the quality of mould.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Abd Elmalik Goufi ◽  
Khelifa Harichane ◽  
Zamila Harichane ◽  
Mohamed Ghrici ◽  
Abdelmoumen Aala Eddine Driss

2021 ◽  
Vol 80 (23) ◽  
Author(s):  
Guo-sheng Xiang ◽  
Wei-min Ye ◽  
Fazal E. Jalal

Sign in / Sign up

Export Citation Format

Share Document